International Journal of Environmental Bioremediation & Biodegradation
ISSN (Print): 2333-8628 ISSN (Online): 2333-8636 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
International Journal of Environmental Bioremediation & Biodegradation. 2015, 3(3), 79-85
DOI: 10.12691/ijebb-3-3-2
Open AccessArticle

Bioremediation of Crude Oil Polluted Soil Using Animal Waste

Obiakalaije U.M.1, , Makinde O.A.2 and Amakoromo E.R.1

1Department of Microbiology, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria

2Department of Microbiology, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria

Pub. Date: December 25, 2015

Cite this paper:
Obiakalaije U.M., Makinde O.A. and Amakoromo E.R.. Bioremediation of Crude Oil Polluted Soil Using Animal Waste. International Journal of Environmental Bioremediation & Biodegradation. 2015; 3(3):79-85. doi: 10.12691/ijebb-3-3-2


Crude oil contaminated soil from Isaka mangrove in Okirika local government area of Rivers state was treated with three different organic wastes (goat manure, poultry droppings and cow dung), for a period of 28 days. The four treatment samples were tilled twice a week and watered with 50 ml of distilled water weekly. There was a general increase in microbial count for all the treatments with the amended samples having a higher microbial count. The total heterotrophic bacterial count for the A, B, C and D treatment options increased from 2.85x105-1.95x106cfu/g, 3.02x105-3.09x106cfu/g, 2.75x105-2.69x106cfu/g and 2.88x105-2.51x106cfu/g respectively. The hydrocarbon utilizing bacterial count for the A, B, C, and D treatment options increased from 2.51x105-1.74x106cfu/g, 2.85x105-2.95x106cfu/g, 2.63x105-2.51x106cfu/g and 2.51x105-2.29x106cfu/g respectively. There was a progressive increase in total heterotrophic fungal count, with B treatment option showing the highest increase at 3.02x106cfu/g. The hydrocarbon utilizing fungal count for the A, B, C and D treatment options increased from 1.05x105-1.26x106cfu/g, 1.10x105-2.24x106cfu/g, 1.12x105-2.09x106cfu/g, and 1.10x105-1.99x106cfu/g respectively. By day 28, the percentage loss of biodegradation of total petroleum hydrocarbon for the B, C, D and A treatment options as measured with GC-FID were 87.1%, 76.6%, 70.7%, and 32.1%, respectively. Ten hydrocarbon utilizing bacterial isolates identified were Escherichiacoli ., Citrobacter sp., Bacillus sp., Micrococcus sp., Pseudomonas sp., Flavobacterium sp., Alicagenes sp., Corynebacterium sp., Arthrobacter sp., Aeromonas sp., and seven hydrocarbon utilizing fungal isolates obtained were Aspergillus sp., Candida sp., Fusarium sp., Mucor sp., Penicillum sp., Rhodotorula sp., and Rhizopus sp. The results of this study indicated that nutrient amendment can enhance the rate of biodegradation of crude oil polluted soil.

bioremediation biodegradation crude oil contaminated amendment

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Abu, G. O. and Ogiji, P.A. (1996). Initial test of a bioremediation scheme for the clean-up of an oil-polluted water body in a rural community in Nigeria. Bioresource Technol., 58: 7-12.
[2]  Adesodun, J. K. and. Mbagwu, J.S.C. (2008). Biodegradation of waste lubricating petroleum oil in a tropical soil as mediated by animal droppings. Bioresource Technol., 99: 5659-5665.
[3]  Agarry, S. E., Owabor,C.N. and Yusuf R.O. (2010). Bioremediation of Soil Artificially Contaminated with Petroleum Hydrocarbon Oil Mixtures: Evaluation of the Use of Animal Manure and Chemical Fertilizer. Bioremediation J., 14 (4): 189-195.
[4]  Ahearn, D.G., Meyers, S.P. and. Standard P.G. (1971). The role of yeast in the decomposition of oils in marine environment. Dev. Ind. Microbiol., 12: 126-134.
[5]  Akpoveta, O.V., Egharevba, F., Medjor, O.W., Osaro, K.I. and. Enyemike E. D. (2011). Microbial degradation and its kinetics on crude oil polluted soil. Research J. of Chem. Sci., 1: (6) 8-14.
[6]  Bumpus, J.A. (1989). Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium, Appl. Environ. Microbiol., 55 (1): 154-158,
[7]  Chikere, C.B., Chikere, B.O. and Okpokwasili, G.C. (2012). Bioreactor- based bioremediation of hydrocarbon polluted Niger Delta Marine Sediment. Nig. Biotech., 2 (1): 53-66.
[8]  Chikere C.B, Okpokwasili G.C. and lchiakor O. (2009a) Characterisation of hydrocarbon utilizing bacteria intropical marine sediments. Afr J Biotechnol8(11). 2541-2544.
[9]  Colwell, R.R., and Walker, J.D. (1977). Ecological aspects of microbial degradation of petroleum in the marine environments. Crit. Rev. Microbiol., 5 (4): 423-445.
[10]  Eziuzor, C. S. and Okpokwasili G.C. (2009). Bioremediation of hydrocarbon contaminated mangrove soil in a bioreactor. Nig. J. Microbiol., 23 (1), 1777-1791.
[11]  Fought, J.M. and Westlake. D.W.S. (1982). Effects of dispersant corexit 9527 on the microbial degradation of Prudhoe Bay Oil. Can. J. Microbiol. 28:117-122.
[12]  Gertler C., Gerdts, G., Timmis, K.N., Yakimov, M.M. and. Golyshin, P.N. (2009) Populations of heavy fuel oil-degrading marine microbial community in presence of oil sorbent materials. J. Appl.Microbiol. 107:590-605.
[13]  Ijah, U.J.J. and Antai, S.P. (2003a). The potential use of chicken droppings microrganisms for oil spill remediation. The Environmentalist 23: 89-95.
[14]  Jobson, A.M, Cook, F.D. and Westlake, D.W.S. (1979). Interaction of aerobic and anaerobic bacteria in petroleum biodegradation. Chem. Geol. 24:355-365.
[15]  Kaplan, C.W. and Kitts,C.L. (2004). Bacterial succession in a petroleum land treatment unit. Appl. Environ. Microbiol., 70: 1777-1786.
[16]  Knaebel, D.B.,Federle, T.W., McAvoy, D.C. and. Vestal J.R. (1994): Effects of mineral and organic soil constituents on microbial mineralisation of organic compounds in natural soil. Appl. Environ. Microbiol., 60: 4500-4508.
[17]  Leahy, J.G, and. Colwell, R.R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 305-315.
[18]  Lee, K., and. Trembley, G.H. (1993). Bioremediation: Application of slow-release fertilizers on low energy shorelines.In Proceedings of the 1993 Oil Spill Conference, American Petroleum Institute, Washington D C, pp.449-454.
[19]  Macnaughton, S.J., Stephen, J.R., Venosa, A.O., Davis, G.A., Chang, Y.J. and White, D.C. (1999). Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566-3574.
[20]  Mentzer, E. and. Ebere, D (1996). Remediation of hydrocarbon contaminated sites. A paper presented at 8th Biennial International Seminar on the Petroleum Industry and the Nigerian Environment, November, Port Harcourt.
[21]  Mills, A.L., Beuil, C. and Cowell, R.R. (1978). Enumeration of Petroleum degrading Marine and Estuarine Microorganisms by most Probable Number Method. C and J. Microbiol., 24: 552-557.
[22]  Nakasaki, K., Yaguchi, H. Sasaki, Y. and Kubota, H. (1992). Effect of C/N ratio on thermophilic composting of garbage. J. of Fermentation and Bioeng., 73: 43-45.
[23]  Obire O., and Anyanwu,E.C. (2008). Impacts of various concentrations of crude oil on fungal populations of soil. Int. J. Environ. Sci. Tech., 6 (2): 211-218.
[24]  Obire, O. (1988). Studies on the biodegradation potentials of some microorganisms isolated from water systems of two petroleum producing areas in Nigeria. Nig. J. Bot., 1: 81-90.
[25]  Okpokwasili, G. C. and. Amanchukwu, S.C. (1988). Petroleum hydrocarbon degradation by Candida species. Environ. Int., 14: 243-247.
[26]  Okpokwasili, G.C. and OdokumaL.O. (1994). Tolerance of Nitrobacter to toxicity of some Nigerian crude oils. Bull. Environ. Contam. Toxicol., 52: 388-395.
[27]  Okpokwasili, G.C., Somerville, C.C., Sullivan, M., Grimes, D.J. and. Colwell, R.R. (1986). Plasmid mediated degradation of hydrocarbons in estuarine bacteria. Oil Chem. Pollu., 5:117-129.
[28]  Orji F .A., Ibiene, A. A. and Dike, E.N. (2012). Laboratory scale bioremediation of petroleum hydrocarbon-polluted mangrove swamp in the Niger Delta using cow dung. Malaysian J. of Microbiol., 8: (4): 219-228.
[29]  Paul, E. A., and. Clark, F.E (1988). Soil microbiology and biochemistry. Academic Press Inc., New York.
[30]  Quatrini, P., Scaglione, G. De Pasquale, C. Reila, S. and. Puglia, A.M. (2008).Isolation of Gram-positive n-alkane degraders from a hydrocarbon contaminated Mediterranean shoreline. J. Appl. Microbiol., 104: 251-259.
[31]  Roling, W.F.M., Milner, M.G., Jones, D.M., Lee, K., Daniel, F., Swannell, R.P.J. and. Head I.M., (2002). Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol., 68:5537-5548.
[32]  Rosenberg, E. and. Ron, E.Z (1996). Bioremediation of petroleum contamination In: Crawford RL and Crawford DL (eds.) Cambridge: Cambridge University Press. Bioremediation: Principles and Application pp.100-124.
[33]  Ruberto, L., Dias,R., Balbo, A.L,. Vazquez, S.C., Hernadez, E.A. and. Cormac W.P.M, (2006). Influence of nutrients addition and bioaugumentation on the hydrocarbon biodegradation of a chronically contaminated Antartic soil. J. Appli. Microbiol., 106: 1101-1110.
[34]  Vidali, M. (2001).Bioremediation . An overview .PureAppli. Chem., 73:1163-1172.
[35]  Wang, W., Liang,S. and Meyers, T. (2008). Validating MODIS land surface temperature products using long term nightline ground measurement. Remote sensing of Environ., 112: 623-635.
[36]  Yakimov M.M.,Timmis,K.N. and. Golyshin,P.N. (2007). Obligate oil degrading marine bacteria. Curr.Opin.Biotechnol., 18: 257-266.