International Journal of Environmental Bioremediation & Biodegradation
ISSN (Print): 2333-8628 ISSN (Online): 2333-8636 Website: http://www.sciepub.com/journal/ijebb Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
International Journal of Environmental Bioremediation & Biodegradation. 2014, 2(4), 178-191
DOI: 10.12691/ijebb-2-4-5
Open AccessArticle

Status of Phytoremediation in World Scenario

Parul Sharma1, and Sonali Pandey1

1JECRC University, Ramchandrapura, IS-2036 to 2039, Tuwariyan Ki Dhani, Vidhani, Rajasthan

Pub. Date: July 09, 2014

Cite this paper:
Parul Sharma and Sonali Pandey. Status of Phytoremediation in World Scenario. International Journal of Environmental Bioremediation & Biodegradation. 2014; 2(4):178-191. doi: 10.12691/ijebb-2-4-5

Abstract

The burning issue of today,s environment problem is the release of toxic contaminants from various man made sources resulting in contamination of natural resources of earth and leading to scarcity of clean water and loss of soil fertility. To overcome these drawbacks,the concept of using plant to clean up contaminated environment is not new. about 300 years ago, plants were proposed for use in the treatment of waste water.land and water pollution by heavy metals is a world wide issue. therefore has been an increasing concern with regard to accumulation of heavy metals in environment as they pose big threat to both human health and natural environment. in central and eastern european countries about 1.7 million sites were contaminated with heavy metals and need reclamation. in developing countries particularly india, china, pakistan, bangladesh, soil and water pollution is also severe where small industrial units are pouring their untreated effluents over near agricultural fields.the use of plants species for cleaning polluted soils and water named as phytoremediation has gained increasing attention since last decade, as an emerging cheaper technology. This article reviewed the status of phytoremediation in global prospects.

Keywords:
contaminated heavy metals pollution

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 2

References:

[1]  Gosavi K, Sammut J, Gifford S, Jankowski J., “Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds”., Sci Total Environ., 324, 25-39, (2004).
 
[2]  Kumari R, Kaur I, Bhatnagar AK., “Enhancing soil health and productivity of Lycopersicon esculentum Mill. using Sargassum johnstonii Setchell and Gardner as a soil conditioner and fertilizer”., J Appl Phycol.,25(4), 1225-1235, (2013).
 
[3]  Chen J, Qing-Xuan Xu, Yi Su, Zhi-Qi Shi, Fengxiang X., “Phytoremediation of organic polluted soil”., J Bioremed Biodegrad.,4, 1-3, (2013).
 
[4]  Yerima MB, Umar AF, Shinkafi SA, Ibrahim ML., “Bioremediation of hydrocarbon pollution: a sustainable means of biodiversity conservation”., J Sustain Dev Environ Prot., 3, 43-50, (2012).
 
[5]  Buchman SL, Nabhan GP. “The forgotten Pollinators”., Washington DC, Island Press; 345, (1996).
 
[6]  Prokop G, Schamann M, Edelgaard I., “Management of contaminated sites in western Europe”., European Environment Agency, Copenhagen, Denmark, 171, (2000).
 
[7]  Kumar A, Bisht BS, Joshi VD, Dhewa T., Review on bioremediation of polluted environment: a management tool., Int J Environ Sci.,1, 1079-1093, (2011).
 
[8]  Van Dillewijn P, Caballero A, Paz JA, Gonzalez-Perez, MM, Oliva JM, Ramos JL. “Bioremediation of 2,4,6 trinitrotoluene under field conditions”., Environ Sci Technol.,41, 1378-1383, (2007).
 
[9]  Prescott LM, Harley JP, Klein DA., Microbiology”., McGraw-Hill, New York; 5, 1014, (2002).
 
[10]  US Congress Office of technology assessment, bioremediation for marine oil spillsbackground paper, OTA-BP-O-70 (Washington, DC: U.S. Government Printing Office); 1991.
 
[11]  Kumar A, Bisht BS, Joshi VD, Dhewa T., “Review on bioremediation of polluted environment: a management tool”., Int J Environ Sci.,1, 1079-1093 (2011).
 
[12]  Kratochvil D, Volesky B., “Advances in the biosorption of heavy metals. Trends in Biotechnol”., 16, 291-300, (1998).
 
[13]  Li Y, Li B., “Study on fungi-bacteria consortium bioremediation of petroleum contaminated mangrove sediments amended with mixed biosurfactants”., Adv Mat Res., 183,1163-1167, (2011).
 
[14]  Vidali M., “Bioremediation-An overview”., Pure Appl Chem., 73(7), 1163-1172, (2001).
 
[15]  Pilon-Smits, E.A.H., “Phytoremediation., Annual Review of Plant Biology”, 56, 15-39, (2005).
 
[16]  Raskin, I. and Ensley, B.D., Phytoremediation of Toxic Metals—Using Plants to Clean up the Environment”. J. Wiley & Sons, New York, 304, (2000).
 
[17]  Robinson, B.H., Green, S., Mills T., Clothier, B., Velde, M, Laplane, R., Fung, L., Deurer, M., Hurst, S., Thayalakumaran, T., and Dijssel, C., “Phytoremediation: Using plants as blowups to improve degraded environments”., Australian Journal of Soil Research, 41, 599-611, (2003).
 
[18]  Salt, D.E., Smith, R.D., and Raskin, I.,. “Phytoremediation., Annual Review of Plant Physiology and Plant Molecular Biolog”y, 49, 643-68, (1998).
 
[19]  Zouboulis, A.I. and Katsoyiannis, I.A., “Recent advances in the bioremediation of arsenic-contaminated groundwaters”. Environment International, 31(2), 213-19. (2005).
 
[20]  Mudhoo A., Sharma S. K., Lin Z. Q., and Dhankher O. P.,Phytoremediation of Arsenic-Contaminated Environment An Overview”, (Eds. Sharma S.K., Mudhoo A.,), Green chemistry for environmental sustainability, Taylor and Francis Group, Boca ratan London, New York, 127, (2010).
 
[21]  Cunningham, S. D., and Ow, D. W. “Promises and prospect of phytoremediation”. Plant Physiol., 110, 715-719, (1996).
 
[22]  Raskin, I., and Ensley, B. D., “Recent developments for in situ treatment of metal contaminated soils. In: Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment”. John Wiley & Sons Inc., New York, (2000).
 
[23]  United States Environmental Protection Agency (USEPA)., “Introduction to Phytoremediation”. EPA, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH., (2000).
 
[24]  Zhang, X., Xia, H., Li, Z., Zhang, P., and Gao, B.,” Potential of four forage grasses in remediation of Cd and Zn contaminated soils”, Bioresour. Technol., 101, 2063-2066, (2010).
 
[25]  Wuana, R. A, Okieimen, F. E., and Imborvungu, J. A.,” Removal of heavy metals from contaminated soil using chelating organic acids”. Int. J. Environ. Sci. Tech., 7, 485-496, (2010).
 
[26]  EPA, “A Citizen’s Guide to Phytoremediation”, United States Environmental Protection Agency, 6, (2000).
 
[27]  Brennan, M. A., and Shelley, M. L., “A model of the uptake, translocation, and accumulation of lead (Pb) by maize for the purpose of phytoextraction”., Ecol. Eng., 12, 271-297, (1999).
 
[28]  Zhang, H., Zheng, L. C., and Yi, X. Y., “Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.)”., Int. J. Environ. Sci. Tech., 6, 249-258, (2009).
 
[29]  Trap, S., Kohler, A., Larsen, L. C., Zambrano, K. C., and Karlson, U., “Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar tree”s., J. Soil Sediments, 1, 71-76, (2005).
 
[30]  Zhuang, P., Ye, Z. H., Lan, C. Y., Xie, Z. W, and Hsu, W. S., “Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species”. Plant Soil, 276, 153-162, (2005).
 
[31]  Hartman WJ., “An evaluation of land treatment of municipal wastewater and physical siting of facility installations”. Washington DC; US Department of army, (1975).
 
[32]  Baumann A., Das Verhalten von Zinksatzen gegen Pflanzen and in Boden., Landwirtsch. Vers,-Statn, 31, 1-53, (1885).
 
[33]  Minguzzi C, Vergnano O., “II content di nichel nelli ceneri di Alyssum bertlonii Desv. Atti della societa Toseana di Science Naturali”, Mem Ser A, 55, 49-77, (1948).
 
[34]  Rascio W., “Metal accumulation by some plants growing on Zn mine deposits”., Oikos, 29, 250-253, (1977).
 
[35]  Salt DE., Blaylock M., Kumar PBAN, Dushenkov V, Ensley BD, Chev, Raskin I., “Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants”., Biotechnology, 13, 468-475, (1977).
 
[36]  Chaney RL., “Plant uptake of inorganic waste., In land treatment of hazardous waste”, eds Parr JE, Marsh PB, Kla JM, 50-76, (1983).
 
[37]  Baker AJM, Reeves RD, McGrath SP, “In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants a feasibility study., In situ Bioreclamation”, eds RE Hinchee, RF Olfenbuttel, 539-544, (1991).
 
[38]  Gade, L. H., Highly polar metal—Metal bonds in “early-late” heterodimetallic complexes., Angewandte Chemie-Internat. 39, 2658-2678, (2000).
 
[39]  McKeehan, P., “Brownfields: The Financial, Legislative and Social Aspects of the Redevelopment of Contaminated Commercial and Industrial Properties”. (2000).
 
[40]  McGrath, S. P., F. J. Zhao and Lombi. E., “Plant and rhizosphere process involved in phytoremediation of metal-contaminatedsoils”. Plant Soil., 232,207-214, (2001).
 
[41]  Ragnarsdottir, K. V. and Hawkins. D., “Trace metals in soils and their relationship with scrapie occurrence”, Geochim. Cosmochim. Acta, 69, A194-A196, (2005).
 
[42]  Cearley, B., Jack E. and. Coleman. L. R, “Cadmium toxicity and Accumulation in Southern Naiad. Department of Environmental Health”, University of Oklahoma health Sciences centre, Bulletin of Environmental Health and Toxicology, 9, 2, (1973).
 
[43]  Singh, O. V., Labana S., Pandey G., Budhiraja R. and Jain. R. K., “Phytoremediation: an overview of metallic ion decontamination from soil”., Appl. Microbiol. Biotech. 61,405-412, (2003).
 
[44]  Vieira, R. H. S. F., Volesky B., “Biosorption: A solution to pollution”. Int. Microbiol. 3,17-24.
 
[45]  Yuan, Y., Hall K. and Oldham. C., “A preliminary model for predicting heavy metal contaminants loading from an urban catchment”., Sci Total Environ., 206, 299-307, (2001).
 
[46]  Rai, P. K., “Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An eco-sustainable approach”. Int. J. Phytorem. 10, 133-160, (2008).
 
[47]  Kumar PBAN, Dushenkov V, Motto H, Raskin L. “Phytoextraction: the use of plants to remove heavy metals from soils”., Environ Sci Technol, 29, 1232-1238. (1995).
 
[48]  Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, et al. “Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants”. Biotechnol, 13, 468-474, (1995).
 
[49]  Rulkens WH, Tichy R, Grotenhuis JTC, “Remediation of polluted soil and sediment: perspectives and failures”, Water Sci Technol, 37, 27-35, (1998).
 
[50]  Susarla S, Medina VF, McCutcheon SC. “Phytoremediation: an ecological solution to organic chemical contamination”. Ecol Eng, 18, 647-658, (2002).
 
[51]  Wang M, Zou J, Duan X, Jiang W, Liu D., “Cadmium accumulation and its effects on metal uptake in maize (Zea mays, L.)”., Bioresour Technol; 98, 82-88, (2007).
 
[52]  Liang H-M, Lin T-H, Chiou J-M, Yeh K- C., “Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators”., Environ Pollut; 157, 1945-1952. (2009).
 
[53]  Robinson B, Ferna´ndez J-E, Madejo´n P,Maran˜ o´n T, Murillo JM, Green S. “Phytoextraction: an assessment of biogeochemical and economic viability”. Plant Soil, 249, 117-125, (2003).
 
[54]  Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, et al. “Phytoremediation of soil metals”, Curr Opin Biotechnol, 8, 279-284. (1997).
 
[55]  Meers E, Ruttens A, Hopgood M, Lesage E, Tack F. “Potential of Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils”, Chemosphere, 61, 561-572, (2005).
 
[56]  Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, et al. “Phytoremediation of contaminated soils and groundwater: lessons from the field”. Environ Sci Pollut Res, 16, 765-794, (2009).
 
[57]  Ruttens A, Boulet J, Weyens N, Smeets K, Adriaensen K, Meers E, et al., “Short rotation coppice culture of willow and poplar as energy crops on metal contaminated agricultural soils”., Int J Phytorem, 13, 194-207, (2011).
 
[58]  Licht L, Isebrands J., “Linking phytoremediated pollutant removal to biomass economic opportunities”., Biomass Bioenergy, 28,203-218, (2005).
 
[59]  Witters N, Mendelsohn RO, Van Slycken S, Weyens N, Schreurs E, Meers E, et al. “Phytoremediation, a sustainable remediation technology, Conclusions from a case study. I: Energy Production and Carbon Dioxide Abatement. Biomass Bioenergy”; In press.
 
[60]  Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S., “Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues,ranges and recommendations., Resour Conservation Recycling”, 53,434-447. (2009).
 
[61]  Rettenmaier N, Ko¨ppen S, Ga¨rtner SO, Reinhardt GA., “Life cycle assessment of selected future energy crops for Europe”. Biofuels, Bioproducts & Biorefining; 4, 620-936. (2010).
 
[62]  Bouman M, Heijungs R, van der Voet E, van den Bergh JCJM, Huppes G., “Material flows and economic models: an analytical comparison of SFA, LCA and partial equilibrium models”., Ecol Econ, 32, 195-216. (2000).
 
[63]  Page CA, Diamond ML, Campbell M, McKenna S., “Life-cycle framework for assessment of site remediation options: case study”., Environ Toxicology Chem; 18, 801-810., (1999).
 
[64]  EPA., “Green remediation: incorporating sustainable environmental practices into remediation of contaminated sites. EPA”; (2008).
 
[65]  Suer P, Andersson-Sko¨ ld Y. Biofuel or excavation – “life cycle assessment (LCA) of soil remediation options”., Biomass Bioenergy; 35, 969-981, (2011).
 
[66]  Munda G., “Cost-benefit analysis in integrated environmental assessment: some methodological issues”, Ecol Econ, 19, 157-168, (1996).
 
[67]  Ekins P., “The social cost of carbon and the shadow price of carbon: what they are, and how to use them in economic appraisal in the UK”., 8, (2007).
 
[68]  Dietz S., “The social cost of carbon and the shadow price of carbon: what they are, and how to use them in economic appraisal in the UK”., 16, (2007).
 
[69]  Price R, Thornton S, Nelson S., “In: The social cost of carbon and the shadow price of carbon: what they are, and how to use them in economic appraisal”. The UK. London: DEFRA;., 24, (2007).
 
[70]  Tol R., “The social cost of carbon: trends, outliers and catastrophes. Economist”, 2, 24. (2008).
 
[71]  Clarkson R, Deyes K., “Estimating the social cost of carbon emissions. DEFRA”, 59, (2002).
 
[72]  Bickel P, Friedrich R., “Externalities of energy, methodology 2005 update. Luxembourg: European Commission”, 270, (2005).
 
[73]  Merkhofer MW., “Decision science and social risk management, a comparative evaluation of cost-benefit analysis, decision analysis, and other formal decision-aiding approaches”. Dordrecht: D. Reidel Publishing Company; (1987).
 
[74]  Graves PE., “Environmental economics, a critique of benefitcost analysis”. Lanham: Rowman & Littlefield Publishers, Inc; (2007).
 
[75]  Hanegraaf MC, Biewinga EE, van derBijl G., “Assessing the ecological and economic sustainability of energy crops”. Biomass Bioenergy, 15, 345-355, (1998).
 
[76]  Thewys T, Witters N, Meers E, Vangronsveld J., “Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part II: economics of anaerobic digestion of metal contaminated maize in Belgium”. Int J Phytorem, 12, 663-679, (2010).
 
[77]  Schmidhuber J., “Impact of an increased biomass use on agricultural markets, prices and food security: a longer-term perspective”, 34, (2006).
 
[78]  Doran PM, Nedelkoska TV, Uptake of heavy metals by hairy roots of hyperaccumulating plant species. Abstr Pap Am Chem Soc 217: U168, (1999).
 
[79]  Marques L, Cossegal M, Bodin S, Czernic P, Lebrun M, Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens. New Phytol 164:289-295, (2004).
 
[80]  Rascio N, Navari-Izzo F, Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci, 180, 169-181, (2011).
 
[81]  Cobbet, C.S.,. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123, 825-832. (2000).
 
[82]  Clemens, S.,. Molecular mechanisms of plant tolerance and homeostasis: a review. Planta 212, 457-486, (2001).
 
[83]  Friedland A.J.. The movement of metals through soils and ecosystems. In: Shaw AJ (ed) Heavy metals tolerance implants : evolutionary aspects. CRC Press, Boca Raton, 7-19 (1990).
 
[84]  Vamerali, T.; Bandiera, M.; Mosca, D. Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett., 8, 1-17, (2010).
 
[85]  Nouairi, I.; Wided Ben Ammar, W.; Youssef, N.; Douja Ben Miled Daoud, D.B.; Habib Ghorbal, M.; Zarrouk, M. Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci., 170, 511-519, (2006).
 
[86]  Salt, D.E.; Smith, R.D.; Raskin, I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 643-668. (1998).
 
[87]  Gisbert, C.; Clemente, R.; Navarro-Aviñó, J.; Carlos Baixauli, C.; Ginér, A.; Serrano, R.; Walker, D.J.; Pilar Bernal, M.P. Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ. Exp. Bot., 56, 19-26. (2006).
 
[88]  D. Glass Associates, Inc., “U.S. and International Markets for Phytoremediation”, 1999-2000, (1999).
 
[89]  United States Environmental Protection Agency (USEPA)., “Cleaning Up the Nation’s Waste Sites: Markets and Technology Trend”s., Washington, DC, (1997).
 
[90]  Raskin, I. And B. D. Ensley., “Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment”., John Wiley & Sons, Inc., New York, (2000).
 
[91]  “United States Environmental Protection Agency: Lead and Human Health”, (2000).
 
[92]  MeasuringMercury.(1996).http://ehpnet1.niehs.nih.gov/docs/1996/104(8)/focus.html (12 June, 2000).
 
[93]  “Phytoremediation: Using Plants to remove Pollutants from the Environment”, (2000).
 
[94]  Raskin, I. And B. D. Ensley., “Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment”., John Wiley & Sons, Inc., New York, (2000).
 
[95]  Van der Lelie, D., Schwitzguebel, J. P., Glass, D. J., Vangronsveld, J., Baker, A. J. M., “Assessing phytoremediation’s progress in the United States and Europe”, Environ. Sci.Technol. 35, 446A-452A, (2001).
 
[96]  Marmiroli N., Marmiroli M. and Maestri E., “Phytoremediation and Phytotechnologies: a review for the present and the future, soil and water pollution monitoring, Protection and Remediation”, 3-23, Springer, (2006).
 
[97]  USEPA., “Integrated risk information system (IRIS)”, Cincinnati, OH: Environmental Criteria Assessment Office, 43, (1993a).
 
[98]  Kvesitadze, G., Khatisashvili, G. and Sadunishvili, T., “Mechanisms to detoxify selected organic contaminants in higher plants and microbes, and their potential use in landscape management. Report Submitted to European Research Office, United Kingdom”., 5-6,(2004).
 
[99]  Alcock, R. and Jones, K.C., “Organic contaminant in UK digested sewage sludges ii: polychlorinated biphenyls”, Chemos. 26, 2199-2207, (1993).
 
[100]  Pilon-Smith, E., “Phytoremediation”., Plant Biol. 56, 15-39, (2005).
 
[101]  Graham, C. and Ramsden, J.J., “Introduction to global warming: Complexity and security”. IOS Press, 147-184, (2008).
 
[102]  Idris, A., Inanc, B., and Hassan, M. N., “Overview of waste disposal and landfills/dumps in Asian countries”,. J Mater Cycles Waste Manag., 6, 104-110, (2004).
 
[103]  Kvesitadze, E., Sadunishvili, T.and Kvesitadze, G.,”Mechanisms of organic contaminants uptake and degradation in plants”., World Academy. Scien. Engi. Technol., 55, 458-468, (2009).
 
[104]  Prasad M. N. V., “Phytoremediation Methods in Biotechnology”, Phytoremediation in India (Springer), 23, 435-454, (2007).
 
[105]  Kumar J.I.N., Soni H., Kumar R.N., Bhatt I., Macrophytes in Phytoremediation of Heavy Metal Contaminated Water and Sediments in Pariyej Community Reserve, Gujarat, India, Turkish Journal of Fisheries and Aquatic Sciences, 8, 193-200, (2008).
 
[106]  Ghosh M., Singh S.P., A Review on Phytoremediation of Heavy Metals and Utilization of its Byproducts, Applied Ecology and Environmental Research, 3(1), 1-18 (2005).
 
[107]  Valipoura A., Ramanb V.K., Gholea V.S., A new approach in wetland systems for domestic wastewater treatment using Phragmites sp., Ecological Engineering, Elsevier, 35, (2009).
 
[108]  Herniwanti, Priatmadi.J., Yanuwiadi. B., Soemarno, Water Plants Characteristic for Phytoremediation of Acid Mine Drainage Passive Treatment, International Journal of Basic & Applied Sciences, 13, 06, (2013).
 
[109]  Luqman M., Butt T. M., Tanvir A., Atiq M., Hussan M.Z.Y., Yaseen M., Phytoremediation of polluted water by trees: A review, International Journal of Agricultural Research and Reviews, 1 (2), 022-025, (2013).
 
[110]  Shams K. M., Tichy G., Fischer A., Filip K., Sager M., Bashar A., Peer T., Jozic M., Chromium contamination from tannery wastes in the soils of Hazaribagh area in Dhaka City, Bangladesh, and aspects of its phytoremediation., Geophysical Research Abstracts, 10, (2008).
 
[111]  Wang Z., Wan J., “An Economic Analysis of the Use of Water Hyacinth for Phytoremediation and Biogas Production in Dianchi Lake, China, WorldFish (ICLARM) - Economy and Environment Program for Southeast Asia (EEPSEA)”, (2013).
 
[112]  Robinson B.H., Green S.R., Mills T.M., et al., “Phytoremediation:using plants as biopumps to improve degraded environments”., Austr.J.Soil res. 41, 599-611, (2003).
 
[113]  Hamblin A., “Australia State of the Environment”, CSIRO publishing, Collingwood, Vic. 42, (2001).
 
[114]  Schnoor J.L., “Phytoremediation of soil and groundwater, Technology Evaluation report., Ground water remediation technologies analysiscentre”, Iowa., (2002).
 
[115]  Melbournewater, Infostream, public relation material, www.Melbourne.water.com. au., (2001).
 
[116]  Robinson B., Anderson C., “Phytoremediation in New Zealand and Australia, Methods in Biotechnology”, Phytoremediation: Methods and Reviews., N.Willey, 23, (2003).