International Journal of Environmental Bioremediation & Biodegradation
ISSN (Print): 2333-8628 ISSN (Online): 2333-8636 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
International Journal of Environmental Bioremediation & Biodegradation. 2014, 2(3), 139-145
DOI: 10.12691/ijebb-2-3-7
Open AccessArticle

On Site Application of Pseudomonas Aeruginosa ETL-1942 and Bacillus Cereus ETL-1949 in Decolorization and Degradation of Remazol Black-B

Maulin P Shah1,

1Industrial Waste Water Research Laboratory Division of Applied & Environmental Microbiology Enviro Technology Limited Plot No: 2413/14 GIDC, Ankleshwar-393002 Gujarat, India

Pub. Date: May 22, 2014

Cite this paper:
Maulin P Shah. On Site Application of Pseudomonas Aeruginosa ETL-1942 and Bacillus Cereus ETL-1949 in Decolorization and Degradation of Remazol Black-B. International Journal of Environmental Bioremediation & Biodegradation. 2014; 2(3):139-145. doi: 10.12691/ijebb-2-3-7


In the present study an attempt was made to examine the potential of two bacterial strains for decolorization of Remazol Black-B. The strain, isolated from textile effluent treatment plant was characterized on the basis of morphological, biochemical & genotypic characteristics & it was identified as Pseudomonas aeruginosa & Bacillus cereus. The effect of pH, temperature and initial concentration of dye was studied with an aim to determine the optimal conditions. The bacterial strains used in the study were Pseudomonas aeruginosa. ETL-1942 & Bacillus cereus ETL-1949. Out of this Pseudomonas aeruginosa. ETL-1942 emerged out to be most potent decolorizer, being selected for further studies. The selected bacterium shows higher decolorization in static condition as compared to shaking condition. The optimum pH was 7.0. It shows good decolorization efficiency even in alkaline region. The optimum temperature was 37C. The strain could decolorize Remazol Black-B (250 mg/l) by 94% within 24 h under static condition, pH 7.0, temperature of 37C and initial dye concentration of 250 mg/l. Biodegradation and decolorization was confirmed using UV-VIS spectrophotometry, thin layer chromatography (TLC) and fourier transform infrared spectroscopy (FTIR) analysis. The study confirmed the potential of Pseudomonas aeruginosa ETL-1942 in the bioremediation of Remazol Black-B.

pseudomonas bacillus acid orange bioremediation static shaking

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Agarwal, S.K. (1996). Industrial Environment: Assessment and strategy. APH Publishing Corporation, New Delhi, India.
[2]  An, S.Y.; Min, S.K.; Cha, I.H.; Choi, Y.L.; Cho, Y.S.; Kim, C.H.; Lee, Y.C. (2002). Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol. Lett. 24, 1037-1040.
[3]  Anjaneyulu, Y.; Sreedhara Chary, N.; and Raj, D.S.S. (2005). Decolourization of industrial effluents - available methods and emerging technologies - a review Environ. Sci. Biotechnol. 4, 245-273.
[4]  Asad, S.; Ammozegar, M.A.; Sarbolouki, M.N.; Dastgheib, S.M.M. (2007) Biores.Technol. 98, 2082-2088.
[5]  Banat, I.M.; Nigam, P.; Singh, D.; and Marchant, R. (1996). Microbial decolorization of textile dye containing effluents, a review. Biores. Technol. 15, 507-509.
[6]  Carliell, C.M.; Barclay, S.J.; Naidoo, N.; Buckley, C.A.; Mulholland, D.A.; Senior, E. (1995). Microbial decolourisation of a reactive azo dye under anaerobic conditions. Water SA; 21 (1), 61-9.
[7]  Chang, J.S.; Kuo, T.S. (2000). Kinetics of bacterial decolorization of azo dyes with Escherichia coli NO3. Bioresour. Technol. 75, 107-111.
[8]  Chang, J.S.; Lin, C.Y. (2001). Decolorization kinetics of a Recombinant Escheria coli strain harboring azo dye decolorizing determinants from Rhodococcus sp. Biotechnol. Lett. 23, 631-636.
[9]  Chudgar, R.J. (1985). Azo dyes. In: Kirk-Othmer Encyclopedia of Chemical Technology, Kroschwitz L.I. (ed.) 4th. Vol. 3. Wiley, New York, pp. 821-875.
[10]  Clarke, E.A.; and Anliker, R. (1980). Organic dyes and pigments. Handbook of Environmental Chemistry, Springer Verlag.
[11]  Coughlin, M.F.; Kinkle, B.K.; Bishop, P.L. (1999). Degradation of azo dyes containing aminonapthol by Sphignomonas sp strain 1CX. J. Inds. Microbio Biotechnol. 23, 341-346.
[12]  Coughlin, M.F.; Kinkle, B.K.; Tepper, A.; Bishop, P.L. (1997). Characterization of aerobic azo dye degrading bacteria and their activity in biofilms. Water Sci Techno. 36, 215-220.
[13]  Delee, W.; Niel, C.O.; Hawkes, F.R.; pinheiro, H.M. (1998). Anaerobic treatment of textile effluents: a review. Journal of Chemical Technology and Biotechnology. 73, 323-325.
[14]  Easton, J. (1995). The dye maker’s view. In: Cooper P, editor. Colour in dyehouse effluent. Bradford, UK, Society of Dyers and Colourists, p. 11.
[15]  Fu, Y.; Viraraghavan, T. (2001). Fungal decolorization of dye wastewaters: a review. Bioresour. Technol. 79, 251-262.
[16]  Jadhav, J.P.; Parshetti, G.K.; Kalme, S.D.; Govindwar, S.P. (2007). Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463. Chemosphere 68, 394-400.
[17]  Jiunkins, R. (1982). Pretreatment of textile waste water. Proc. 37th Industrial waste Conference Purdue Uni. Lafayette, Ind p. 37-139.
[18]  Kalme. S.; Ghodake, G.; Gowindwar, S. (2007). Red HE7B degradation using desulfonation by Pseudomonas desmolyticum NCIM 2112. Int Biodeter Biodegr. 60, 327-333.
[19]  Kapdan, I.K.; Tekol. M.; Sengul. F. (2003). Decolorization of simulated textile wastewater in an anaerobic-aerobic sequential treatment system. Proc Biochem. 38, 1031-7.
[20]  Kim, HT. (1994). Soil reaction. In: Environmental soil science. Marcel Dekker Inc, U.S.A, p. 149.
[21]  Kumar, A. (1989). Environmental Chemistry. Wiley Eastern Limited, New Delhi, India.
[22]  Maguire, RJ. (1992). Occurrence and persistence of dyes in a Canadian river. Water Sci Technol. 25, 265-70.
[23]  Meyer, U. (1981). Biodegradation of synthetic organic colorants. In: Leisinger, T, Cook, A.M., Hunter, R., Nuesch, J. (Eds.), FEMS Symposium 12, Academic Press, Londen, pp. 371-385.
[24]  Nachiyaar, C.V.; Rajkumar, G.S. (2003). Degradation of a tannery and textile dye, Navitan Fast Blue S5R by Pseudomonas aeruginosa. W. Journ. Microbiol Biotechnol. 19, 609-614.
[25]  Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247-255.
[26]  Senthilnathan, S.; Azeez, PA. (1999). Water Quality of Effluents from Dyeing and Bleaching Industry in Tiruppur, TamilNadu India. Journal of Industrial Pollution Control, 15 (1), 79-88.
[27]  Sheshadri, S.; Bishop, PL.; Agha, AM. (1994). Anaerobic/aerobic treatment of selected azo dyes in wastewater. Wastes manage. 14, 127-137.
[28]  Stolz, A. (2001). Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol. 56, 69-80.
[29]  Suzuki, T.; Timofei, S.; Kurunczi, L.; Dietze, U.; Schuurmann (2001). Correlation of aerobic biodegradability of Sulfonated azo dyes with the chemical structure. Chemosphere. 45, 1-9.
[30]  Tyagi, O.D.; Mehra, M. (1990). A textbook of environmental chemistry. Anmol Publications, New Delhi, India.
[31]  Vandevivre, P.C.; Bianchi, R.; Verstraete, W. (1998). Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem TechnolBiotechnol. 72, 289-302.
[32]  Weber, E. J.; and Adams, R. L. (1995). Chemical-and sediment-mediated reduction of the azo dye disperse blue 79. Environ. Sci. Technol. 29, 1163±1170.
[33]  Yatome, C., Ogawa, T., Hishida, H., Taguchi, T. (1990). Degradation of azo dyes by cell-free extract from Pseudomonas stutzeri. J. Soc. Dyers Colourists. 106, 280-283.
[34]  Zollinger, H. (1987). Colour Chemistry-Synthesis, Properties of Organic Dyes and Pigments. VCH Publishers, New York, 92-100.
[35]  Brosius J, Palmer JL, Kennedy JP, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal gene from Escherichia coli. Proc Natl Acad Sci USA 75:4 801-4805.
[36]  Kimura M (1980) A simple method for estimating evolutionary rates base substitution through comparative studies of nucleotide sequences. J Mol E vol. 16: 111-120.
[37]  Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4: 406-425
[38]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680
[39]  Drobniewski. F. A., (1993). Bacillus cereus and related species. Clin Microbiol Rev., 6 (4), 324-338.
[40]  Felsenstein, J., (1993). PHYLIP (phylogenetic inference package). version 3.5c. Department of Genetics University of Washington, Seattle WA, USA.