International Journal of Environmental Bioremediation & Biodegradation
ISSN (Print): 2333-8628 ISSN (Online): 2333-8636 Website: http://www.sciepub.com/journal/ijebb Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
International Journal of Environmental Bioremediation & Biodegradation. 2014, 2(2), 75-83
DOI: 10.12691/ijebb-2-2-5
Open AccessArticle

Exploited Application of a Newly Isolated Pseudomonas acidovorans XII in Microbial Degradation of 1-Chloro-4-Nitrobenzene

Maulin P Shah1,

1Industrial Waste Water Research Laboratory Division of Applied & Environmental Microbiology Enviro Technology Ankleshwar Gujarat, India

Pub. Date: April 27, 2014

Cite this paper:
Maulin P Shah. Exploited Application of a Newly Isolated Pseudomonas acidovorans XII in Microbial Degradation of 1-Chloro-4-Nitrobenzene. International Journal of Environmental Bioremediation & Biodegradation. 2014; 2(2):75-83. doi: 10.12691/ijebb-2-2-5

Abstract

Bacterial strain XII, which belongs to the family Pseudomonad, utilizes 1-chloro-4-nitrobenzene as a sole source of carbon, nitrogen, and energy. Suspensions of 1-chloro-4-nitrobenzene -grown cells removed 1-chloro-4-nitrobenzene from culture fluids, and there was a concomitant release of ammonia and chloride. Under anaerobic conditions XII transformed 1-chloro-4-nitrobenzene into a product which was identified as 2-amino-5-chlorophenol by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. This transformation indicated that there was partial reduction of the nitro group to the hydroxylamino substituent, followed by Bamberger rearrangement. In the presence of oxygen but in the absence of NAD, fast transformation of 2-amino-5-chlorophenol into a transiently stable yellow product was observed with resting cells and cell extracts. This compound exhibited an absorption maximum at 395 nm and was further converted to a dead-end product with maxima at 226 and 272 nm. The compound formed was subsequently identified by 1H and 13C NMR spectroscopy and mass spectrometry as 5-chloropicolinic acid. In contrast, when NAD was added in the presence of oxygen, only minor amounts of 5-chloropicolinic acid were formed, and a new product, which exhibited an absorption maximum at 306 nm, accumulated.

Keywords:
Pseudomonas acidovorans microbial degradation NMR 1-chloro-4-nitrobenzene

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Lewis TA, Newcombe DA, Crawford RL: Bioremediation of soils contaminated with explosives. J Environ Manage 2004, 70: 291-307.
 
[2]  Lovley DR: Cleaning up with genomics: Applying molecular biology to bioremediation. Nat Rev Microbiol 2003, 1:35-44.
 
[3]  Soccol CR, Vandenberghe LPS, Woiciechowski AL, Thomaz-Soccol V, Correia CT, Pandey A:Bioremediation: An important alternative for soil and industrial wastes clean-up. Ind J Exp Biol 2003, 41: 1030-1045.
 
[4]  Farhadian M, Vachelard C, Duchez D, Larroche C: In situ bioremediation of monoaromatic pollutants in groundwater: A review. Biores Technol 2008, 99: 5296-5308.
 
[5]  Jorgensen KS: In situ bioremediation. Adv Appl Microbiol 2007, 61: 285-305.
 
[6]  Grimm AC, Harwood CS: Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 1997, 63: 4111-4115.
 
[7]  Law AM, Aitken MD: Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl Environ Microbiol 2003, 69: 5968-5973.
 
[8]  Pandey G, Jain RK: Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 2002, 68: 5789-5795.
 
[9]  Parales RE, Ditty JL, Harwood CS: Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 2000, 66: 4098-4104.
 
[10]  Jones CR, Liu YY, Sepai O, Yan H, Sabbioni G: Internal exposure, health effects, and cancer risk of humans exposed to chloronitrobenzene. Environ Sci Technol 2006, 40: 387-394.
 
[11]  Lopez JL, Garcia Einschlag FS, Rives CV, Villata LS, Capparelli AL: Physicochemical and toxicological studies on 4-chloro-3, 5-dinitrobenzoic acid in aqueous solutions. Environ Toxicol Chem 2004, 23: 1129-1135.
 
[12]  Matsumoto M, Aiso S, Senoh H, Yamazaki K, Arito H, Nagano K, Yamamoto S, Matsushima T: Carcinogenicity and chronic toxicity of para-chloronitrobenzene in rats and mice by two-year feeding. J Environ Pathol Toxicol Oncol 2006, 25: 571-584.
 
[13]  Matsumoto M, Umeda Y, Senoh H, Suzuki M, Kano H, Katagiri T, Aiso S, Yamazaki K, Arito H, Nagano K, et al.: Two-year feed study of carcinogenicity and chronic toxicity of ortho-chloronitrobenzene in rats and mice. J Toxicol Sci 2006, 31: 247-264.
 
[14]  Liu L, Wu JF, Ma YF, Wang SY, Zhao GP, Liu SJ: A novel deaminase involved in chloronitrobenzene and nitrobenzene degradation with Comamonassp. strain CNB-1. J Bacteriol 2007, 189: 2677-2682.
 
[15]  Liu H, Wang SJ, Zhou NY: A new isolate of Pseudomonas stutzerithat degrades 2-chloronitrobenzene. Biotechnol Lett 2005, 27: 275-278.
 
[16]  Ju KS, Parales RE: Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 2010, 74: 250272.
 
[17]  Wu JF, Jiang CY, Wang BJ, Ma YF, Liu ZP, Liu SJ: Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonassp. strain CNB-1. Appl Environ Microbiol 2006, 72: 1759-1765.
 
[18]  Liu H, Wang SJ, Zhang JJ, Dai H, Tang H, Zhou NY: Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzene catabolism pathway in Pseudomonas stutzeri ZWLR2-1. Appl Environ Microbiol 2011, 77: 4547-4552.
 
[19]  Aoki, K., S. Takenaka, S. Murakami, and R. Shinke. 1997. Partial purification and characterization of a bacterial dioxygenase that catalyzes the ring fission of 2-aminophenol. Microbiol. Rev. 152: 33-38.
 
[20]  Asano, Y., Y. Yamamoto, and H. Yamada. 1994. Catechol 2, 3-dioxygenasecatalyzed synthesis of picolinic acids from catechols. Biosci. Biotechnol. Biochem. 58: 2054-2056.
 
[21]  Beil, S., B. Happe, K. N. Timmis, and D. H. Pieper. 1997. Genetic and biochemical characterization of the broad-spectrum chlorobenzene dioxygenase from Burkholderia sp. strain PS12: dechlorination of 1, 2, 4, 5-tetrachlorobenzene. Eur. J. Biochem. 247: 190-199.
 
[22]  Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
 
[23]  Butte, W. 1983. Rapid method for the determination of fatty acid profiles from fats and oils using trimethylsulphonium hydroxide for transesterification. J. Chromatogr. 261: 142-145.
 
[24]  Davison, A. D., P. Karuso, D. R. Jardine, and D. A. Veal. 1996. Halopicolinic acids, novel products arising through the degradation of chloro- and bromobiphenyl by Sphingomonas paucimobilis BPSI-3. Can. J. Microbiol. 42: 66-71.
 
[25]  Dorn, E., M. Hellwig, W. Reineke, and H.-J. Knackmuss. 1974. Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch. Microbiol. 99: 61-70.
 
[26]  Haigler, B. E., S. F. Nishino, and J. C. Spain. 1994. Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. strain DNT. J. Bacteriol. 176: 3433-3437.
 
[27]  He, Z., and J. C. Spain. 1998. A novel 2-aminomuconate deaminase in the nitrobenzene degradation pathway of Pseudomonas pseudoalcaligenes JS45. J. Bacteriol. 180: 2502-2506.
 
[28]  Hughes, J. B., C. Wang, K. Yesland, A. Richardson, R. Bhadra, G. Bennett, and F. Rudolph. 1998. Bamberger rearrangement during TNT metabolism by Clostridium acetobutylicum. Environ. Sci. Technol. 32: 494-500.
 
[29]  Lendenmann, U., and J. C. Spain. 1996. 2-Aminophenol 1, 6-dioxygenase: a novel aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol. 178: 6227-6232.
 
[30]  Linch, A. L. 1974. Biological monitoring for industrial exposure to cyanogenic aromatic nitro and amino compounds. Am. Ind. Hyg. Assoc. J. 35: 426-432.
 
[31]  Montgomery, H. A. C., and D. F. Dymock. 1961. The determination of nitrite in water. Analyst 86: 414-416.
 
[32]  Nishino, S. F., and J. C. Spain. 1993. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol. 59: 2520-2525.
 
[33]  Riegert, U., G. Heiss, P. Fischer, and A. Stolz. 1998. Distal cleavage of 3-chlorocatechol by an extradiol dioxygenase to 3-chloro-2-hydroxymuconic semialdehyde. J. Bacteriol. 180: 2849-2853.
 
[34]  Schenzle, A., H. Lenke, P. Fischer, P. A. Williams, and H.-J. Knackmuss. 1997. Catabolism of 3-nitrophenol by Ralstonia eutropha JMP 134. Appl. Environ. Microbiol. 63: 1421-1427.
 
[35]  Schlo¬®mann, M., E. Schmidt, and H.-J. Knackmuss. 1990. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J. Bacteriol. 172: 5112-5118.
 
[36]  Somerville, C. C., S. F. Nishino, and J. C. Spain. 1995. Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol. 177: 3837-3842.
 
[37]  Sone, T., Y. Tokuda, T. Sakai, S. Shinkai, and O. Manabe. 1981. Kinetics and mechanisms of the Bamberger rearrangement. 3. Rearrangement of phenylhydroxylamines to p-aminophenols in aqueous sulphuric acid solutions. J. Chem. Soc. Perkin Trans. 2 1981: 298-302.
 
[38]  Spiess, T., F. Desiere, P. Fischer, J. C. Spain, H.-J. Knackmuss, and H. Lenke. 1998. A new 4-nitrotoluene degradation pathway in a Mycobacterium strain. Appl. Environ. Microbiol. 64: 446-452.
 
[39]  Stolz, A., and H.-J. Knackmuss. 1993. Degradation of 2, 4-dihydroxybenzoate by Pseudomonas sp. BN9. FEMS Microbiol. Lett. 108: 219-224.
 
[40]  Stothers, J. B. 1972. Carbon-13 NMR spectroscopy. Academic Press, New York, N.Y.
 
[41]  Takenaka, S., S. Murakami, and R. Shinke. 1998. Metabolism of 2-aminophenol by Pseudomonas sp. AP-3: modified meta-cleavage pathway. Arch. Microbiol. 170: 132-137.
 
[42]  Takenaka, S., S. Murakami, R. Shinke, K. Hatakeyama, H. Yukawa, and K. Aoki. 1997. Novel genes encoding 2-aminophenol 1, 6-dioxygenase from Pseudomonas species AP-3 growing on 2-aminophenol and catalytic properties of the purified enzyme. J. Biol. Chem. 272: 14727-14732.
 
[43]  Wittich, R.-M., H. Wilkes, V. Sinnwell, W. Francke, and P. Fortnagel. 1992. Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl. Environ. Microbiol. 58: 1005-1010.
 
[44]  Blasco, R., R.-M. Wittich, M. Mallavarapu, K. N. Timmis, and D. H. Pieper. 1995. From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J. Biol. Chem. 270: 29229-29235.