International Journal of Environmental Bioremediation & Biodegradation
ISSN (Print): 2333-8628 ISSN (Online): 2333-8636 Website: http://www.sciepub.com/journal/ijebb Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
International Journal of Environmental Bioremediation & Biodegradation. 2019, 7(1), 1-19
DOI: 10.12691/ijebb-7-1-1
Open AccessReview Article

Role of Plants and Microbes in Bioremediation of Petroleum Hydrocarbons Contaminated Soils

Aniefiok E. Ite1, 2, and Udo J. Ibok1

1Department of Chemistry, Akwa Ibom State University, P.M.B. 1167, Uyo, Akwa Ibom State, Nigeria

2Research and Development Unit, Akwa Ibom State University, P.M.B. 1167, Uyo, Akwa Ibom State, Nigeria

Pub. Date: March 25, 2019

Cite this paper:
Aniefiok E. Ite and Udo J. Ibok. Role of Plants and Microbes in Bioremediation of Petroleum Hydrocarbons Contaminated Soils. International Journal of Environmental Bioremediation & Biodegradation. 2019; 7(1):1-19. doi: 10.12691/ijebb-7-1-1

Abstract

Petroleum hydrocarbons contamination of soil, sediments and marine environment associated with the inadvertent discharges of petroleum–derived chemical wastes and petroleum hydrocarbons associated with spillage and other sources into the environment often pose harmful effects on human health and the natural environment, and have negative socio–economic impacts in the oil–producing host communities. In practice, plants and microbes have played a major role in microbial transformation and growth–linked mineralization of petroleum hydrocarbons in contaminated soils and/or sediments over the past years. Bioremediation strategies has been recognized as an environmental friendly and cost–effective alternative in comparison with the traditional physico-chemical approaches for the restoration and reclamation of contaminated sites. The success of any plant–based remediation strategy depends on the interaction of plants with rhizospheric microbial populations in the surrounding soil medium and the organic contaminant. Effective understanding of the fate and behaviour of organic contaminants in the soil can help determine the persistence of the contaminant in the terrestrial environment, promote the success of any bioremediation approach and help develop a high–level of risks mitigation strategies. In this review paper, we provide a clear insight into the role of plants and microbes in the microbial degradation of petroleum hydrocarbons in contaminated soil that have emerged from the growing body of bioremediation research and its applications in practice. In addition, plant–microbe interactions have been discussed with respect to biodegradation of petroleum hydrocarbons and these could provide a better understanding of some important factors necessary for development of in situ bioremediation strategies for risks mitigation in petroleum hydrocarbon–contaminated soil.

Keywords:
plants microbes bioremediation biodegradation petroleum hydrocarbons contaminated soils

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Ite, A. E., U. J. Ibok, M. U. Ite, and S. W. Petters, “Petroleum Exploration and Production: Past and Present Environmental Issues in the Nigeria's Niger Delta,” American Journal of Environmental Protection, 1 (4). 78-90, 2013.
 
[2]  Ite, A. E., and K. T. Semple, “Biodegradation of petroleum hydrocarbons in contaminated soils,” Microbial Biotechnology: Energy and Environment, R. Arora, ed., pp. 250-278, Wallingford, Oxfordshire CAB International, 2012.
 
[3]  Benka-Coker, M. O., and A. Olumagin, “Effects of waste drilling fluid on bacterial isolates from a mangrove swamp oilfield location in the Niger Delta of Nigeria,” Bioresource Technology, 55 (3). 175-179, 1996.
 
[4]  Holliger, C., S. Gaspard, G. Glod, C. Heijman, W. Schumacher, R. P. Schwarzenbach, and F. Vazquez, “Contaminated environments in the subsurface and bioremediation: organic contaminants,” FEMS Microbiology Reviews, 20 (3-4). 517-523, 1997.
 
[5]  Kharaka, Y. K., J. S. Hanor, D. H. Heinrich, and K. T. Karl, “Deep Fluids in the Continents: I. Sedimentary Basins,” Treatise on Geochemistry, pp. 1-48, Oxford: Pergamon, 2007.
 
[6]  Colwell, R. R., and J. D. Walker, “Ecological aspects of microbial degradation of petroleum in the marine environment,” CRC Critical Review in Microbiology, 5 (4). 423-445, 1977.
 
[7]  Eweje, G., “Environmental Costs and Responsibilities Resulting from Oil Exploitation in Developing Countries: The Case of the Niger Delta of Nigeria,” Journal of Business Ethics, 69 (1). 27-56, 2006.
 
[8]  Holdway, D. A., “The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes,” Marine Pollution Bulletin, 44 (3). 185-203, 2002.
 
[9]  Emoyan, O. O., A. I. Akpoborie, and E. E. Akporhonor, “The Oil and Gas Industry and the Niger Delta: Implications for the Environment,” Journal of Applied Sciences & Environmental Management, 12 (3). 29-37, 2006.
 
[10]  Sen, R., A. Mudhoo, and D. Gunaseelan, “Biosurfactants: Synthesis, Properties and Applications in Environmental Bioremediation,” Bioremediation and Sustainability: Research and Applications, R. Mohee and A. Mudhoo, eds., pp. 137-211, Canada: John Wiley & Sons, Inc., 2012.
 
[11]  Anderson, R. T., and D. R. Lovley, “Ecology and biogeochemistry of in situ groundwater bioremediation,” Advances in Microbial Ecology, 15 289-350, 1997.
 
[12]  Block, R., N. Allworth, and M. Bishop, "Assessment of diesel contamination in soil," Hydrocarbon contaminated soils, Vol I Remediation Techniques, Environmental Fate, Risk Assessment, Analytical Methodologies, Regulatory Considerations, E. Calabrese and P. Kostecki, eds., pp. 135-148, Chelsea, MI: Lewis Publishers, 1991.
 
[13]  Stroud, J. L., G. I. Paton, and K. T. Semple, “Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation,” Journal of Applied Microbiology, 102 (5). 1239-1253, 2007.
 
[14]  Olajire, A. A., R. Altenburger, E. Küster, and W. Brack, “Chemical and ecotoxicological assessment of polycyclic aromatic hydrocarbon - contaminated sediments of the Niger Delta, Southern Nigeria,” Science of the Total Environment, 340 (1-3). 123-136, 2005.
 
[15]  Osuji, L. C., and A. Ozioma, “Environmental Degradation of Polluting Aromatic and Aliphatic Hydrocarbons: A Case Study,” Chemistry and Biodiversity, 4 (3). 424-430, 2007.
 
[16]  Ite, A. E., and K. T. Semple, “The Effect of Flavonoids on the Microbial Mineralisation of Polycyclic Aromatic Hydrocarbons in Soil,” International Journal of Environmental Bioremediation & Biodegradation, 3 (3). 66-78, 2015.
 
[17]  Surampalli, R. Y., and S. Ong, Natural Attenuation Of Hazardous Wastes, p.^pp. 245, Reston, Va.: American Society of Civil Engineers, 2004.
 
[18]  Alexander, M., Biodegradation and Bioremediation, 2nd ed., p.^pp. 453, New York, NY.: Academic Press, 1999.
 
[19]  Madsen, E. L., “Determining In Situ Biodegradation: Facts and Challenges”. Environmental Science & Technology, 25 (10). 1663-1673, 1991.
 
[20]  Madsen, E. L., “Theoretical and applied aspects of bioremediation: The influence of microbiological processes on organic compounds in field sites,” Techniques in Microbial Ecology, R. Burlage, R. Atlas, D. Stahl, G. Geesey and G. Sayler, eds., pp. 354-407, New York, NY: Oxford University Press, 1998.
 
[21]  Young, L. Y., and C. E. Cerniglia, Microbial Transformation and Degradation of Toxic Organic Chemicals, New York, NY: Wiley Liss, Inc., 1995.
 
[22]  Bhadra, R., R. J. Spanggord, D. G. Wayment, J. B. Hughes, and J. V. Shanks, “Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum,” Environmental Science & Technology, 33 (19). 3354-3361, 1999.
 
[23]  Bizily, S. P., C. L. Rugh, A. O. Summers, and R. B. Meagher, “Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials,” Proceedings of the National Academy of Sciences of the United States of America, 96 (12). 6808-6813, 1999.
 
[24]  Burken, J. G., and J. L. Schnoor, “Predictive relationships for uptake of organic contaminants by hybrid poplar trees,” Environmental Science & Technology, 32 (21). 3379-3385, 1998.
 
[25]  Siciliano, S. D., N. Fortin, A. Mihoc, G. Wisse, S. Labelle, D. Beaumier, D. Ouellette, R. Roy, L. G. Whyte, M. K. Banks, P. Schwab, K. Lee, and C. W. Greer, “Selection of specific endophytic bacterial genotypes by plants in response to soil contamination,” Applied and Environmental Microbiology, 67 (6). 2469-2475, 2001.
 
[26]  Leahy, J. G., and R. R. Colwell, “Microbial degradation of hydrocarbons in the environment,” Microbiological Reviews, 54 (3). 305-315, 1990.
 
[27]  Das, N., and P. Chandran, “Microbial degradation of petroleum hydrocarbon contaminants: an overview,” Biotechnology Research International, 2011 941810, 2011.
 
[28]  Banat, I. M., “Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review,” Bioresource Technology, 51 (1). 1-12, 1995.
 
[29]  Okoh, A. I., “Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants,” Biotechnology and Molecular Biology Reviews, 1 (2). 38-50, 2006.
 
[30]  Brassington, K. J., R. L. Hough, G. I. Paton, K. T. Semple, G. C. Risdon, J. Crossley, I. Hay, K. Askari, and S. J. T. Pollard, “Weathered hydrocarbon wastes: A risk management primer,” Critical Reviews in Environmental Science and Technology, 37 (3). 199-232, 2007.
 
[31]  Ite, A. E., “Biodegradation and Ecotoxicity of Petroleum-derived Chemical Wastes in the Environment,” Lancaster Environment Centre, Lancaster University, 2012.
 
[32]  Ite, A. E., O. O. Adebisi, N. F. Hanney, and K. T. Semple, “The Effect of Rhizosphere Soil and Root Tissues Amendment on Microbial Mineralisation of Target 14C Hydrocarbons in Contaminated Soil,” International Journal of Environmental Bioremediation & Biodegradation, 4 (2). 21-34, 2016.
 
[33]  Ite, A. E., N. F. Hanney, and K. T. Semple, “The Effect of Hydroxycinnamic Acids on the Microbial Mineralisation of Phenanthrene in Soil,” International Journal of Environmental Bioremediation & Biodegradation, 3 (2). 40-47, 2015.
 
[34]  Cerniglia, C. E., “Microbial metabolism of polycylic aromatic hydrocarbons,” Advances in Applied Microbiology, 30 31-71, 1984.
 
[35]  Cerniglia, C. E., “Biodegradation of polycyclic aromatic hydrocarbons,” Biodegradation, 3 (2). 351-368, 1992.
 
[36]  Chaillan, F., C. H. Chaineau, V. Point, A. Saliot, and J. Oudot, “Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings,” Environmental Pollution, 144 (1). 255-265, 2006.
 
[37]  Del'Arco, J. P., and F. P. de França, “Influence of oil contamination levels on hydrocarbon biodegradation in sandy sediment,” Environmental Pollution, 112 (3). 515-519, 2001.
 
[38]  Dibble, J. T., and R. Bartha, “Effect of environmental parameters on the biodegradation of oil sludge,” Applied and Environmental Microbiology, 37 (4). 729-739, 1979.
 
[39]  Ehlers, L. J., and R. G. Luthy, “Peer Reviewed: Contaminant Bioavailability in Soil and Sediment,” Environmental Science & Technology, 37 (15). 295A-302A, 2003.
 
[40]  Semple, K. T., K. J. Doick, K. C. Jones, P. Burauel, A. Craven, and H. Harms, “Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated,” Environmental Science & Technology, 38 (12). 228a-231a, 2004.
 
[41]  Semple, K. T., A. W. J. Morriss, and G. I. Paton, “Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis,” European Journal of Soil Science, 54 (4). 809-818, 2003.
 
[42]  Volkering, F., A. M. Breure, and W. H. Rulkens, “Microbiological aspects of surfactant use for biological soil remediation,” Biodegradation, 8 (6). 401-417, 1997.
 
[43]  Portier, R. J., “Bioremediation and Mitigation,” Environmental Toxicology: Selected Entries from the Encyclopedia of Sustainability Science and Technology, E. A. Laws, ed., pp. 93-119, New York, NY: Springer New York, 2013.
 
[44]  Boulding, J. R., and J. S. Ginn, Practical Handbook of Soil, Vadose Zone, and Ground-Water Contamination: Assessment, Prevention, and Remediation, Second Edition: CRC Press, 2016.
 
[45]  Vidali, M., “Bioremediation. An overview,” Pure and Applied Chemistry, 73 (7). 1163-1172, 2001.
 
[46]  Karthikeyan, R., and P. A. Kulakow, "Soil Plant Microbe Interactions in Phytoremediation," Phytoremediation, D. T. Tsao, ed., pp. 52-74, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
 
[47]  Das, M., and A. Adholeya, “Role of Microorganisms in Remediation of Contaminated Soil,” Microorganisms in Environmental Management: Microbes and Environment, T. Satyanarayana and B. N. Johri, eds., pp. 81-111, Dordrecht: Springer Netherlands, 2012.
 
[48]  Chandra, S., R. Sharma, K. Singh, and A. Sharma, “Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon,” Annals of Microbiology, 63 (2). 417-431, 2013.
 
[49]  Sepic, E., H. Leskovsek, and C. Trier, “Aerobic bacterial degradation of selected polyaromatic compounds and n-alkanes found in petroleum,” Journal of Chromatography A, 697 (1-2). 515-523, 1995.
 
[50]  Haines, J. R., and M. Alexander, “Microbial degradation of high-molecular-weight alkanes,” Applied Microbiology(28). 1084-1085., 1974.
 
[51]  Singer, M., and W. Finnerty, “Microbial metabolism of straight-chain and branched alkanes. In: R. M. Atlas (ed),” Petroleum MicrobiologyMacmillan, New York, pp. 1-59., 1984.
 
[52]  Wammer, K. H., and C. A. Peters, “Polycyclic aromatic hydrocarbon biodegradation rates: A structure-based study,” Environmental Science & Technology, 39 (8). 2571-2578, 2005.
 
[53]  Bossert, I. D., and R. Bartha, “Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil,” Bulletin of Environmental Contamination and Toxicology, 37 (1). 490-495, 1986.
 
[54]  Couling, N. R., M. G. Towell, and K. T. Semple, “Biodegradation of PAHs in soil: Influence of chemical structure, concentration and multiple amendment,” Environmental Pollution, 158 (11). 3411-3420, 2010.
 
[55]  Juhasz, A. L., M. L. Britz, and G. A. Stanley, "Degradation of benzo[a]pyrene, dibenz[a,h]anthracene and coronene by Burkholderia cepacia." pp. 45-51.
 
[56]  Juhasz, A. L., M. L. Britz, and G. A. Stanley, “Degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas cepacia,” Biotechnology Letters, 18 (5). 577-582, 1996.
 
[57]  Huesemann, M. H., “Predictive Model for Estimating the Extent of Petroleum Hydrocarbon Biodegradation in Contaminated Soils,” Environmental Science & Technology, 29 (1). 7-18, 1995.
 
[58]  Varjani, S. J., “Microbial degradation of petroleum hydrocarbons,” Bioresource Technology, 223 277-286, 2017.
 
[59]  Grossi, V., C. Cravo-Laureau, R. Guyoneaud, A. Ranchou-Peyruse, and A. Hirschler-Réa, “Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: A summary,” Organic Geochemistry, 39 (8). 1197-1203, 2008.
 
[60]  Heider, J., A. M. Spormann, H. R. Beller, and F. Widdel, “Anaerobic bacterial metabolism of hydrocarbons,” FEMS Microbiology Reviews, 22 (5). 459-473, 1998.
 
[61]  Spormann, A. M., and F. Widdel, “Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria,” Biodegradation, 11 (2-3). 85-105, 2000.
 
[62]  Widdel, F., and R. Rabus, “Anaerobic biodegradation of saturated and aromatic hydrocarbons,” Current Opinion in Biotechnology, 12 (3). 259-276, 2001.
 
[63]  Atlas, R. M., “Microbial degradation of petroleum hydrocarbons: an environmental perspective,” Microbiological Reviews, 45 (1). 180-209, 1981.
 
[64]  Bartha, R., “Biotechnology of Petroleum Pollutant Biodegradation,” Microbial Ecology, 12 (1). 155-172, 1986.
 
[65]  Van Hamme, J. D., A. Singh, and O. P. Ward, “Recent advances in petroleum microbiology,” Microbiology and Molecular Biology Reviews, 67 (4). 503-549, 2003.
 
[66]  Grishchenkov, V. G., R. T. Townsend, T. J. McDonald, R. L. Autenrieth, J. S. Bonner, and A. M. Boronin, “Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions,” Process Biochemistry, 35 (9). 889-896, 2000.
 
[67]  Fritsche, W., and M. Hofrichter, “Aerobic Degradation of Recalcitrant Organic Compounds by Microorganisms,” Environmental Biotechnology: Concepts and Applications H. J. Jördening and J. Winter, eds., pp. 203-227, Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005.
 
[68]  Fritsche, W., and M. Hofrichter, “Aerobic Degradation by Microorganisms,” Biotechnology: Environmental Processes II H.-J. Rehm and G. Reed, eds., pp. 144-167, Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008.
 
[69]  Díaz, E., Microbial Biodegradation: Genomics and Molecular Biology: Caister Academic Press, 2008.
 
[70]  Rockne, K. J., L. M. Shor, L. Y. Young, G. L. Taghon, and D. S. Kosson, “Distributed Sequestration and Release of PAHs in Weathered Sediment:  The Role of Sediment Structure and Organic Carbon Properties,” Environmental Science & Technology, 36 (12). 2636-2644, 2002.
 
[71]  Srivastava, J., R. Naraian, S. J. S. Kalra, and H. Chandra, “Advances in microbial bioremediation and the factors influencing the process,” International Journal of Environmental Science and Technology, 11 (6). 1787-1800, 2014.
 
[72]  Šašek, V., O. Volfová, P. Erbanová, B. R. M. Vyas, and M. Matucha, “Degradation of PCBs by white rot fungi, methylotrophic and hydrocarbon utilizing yeasts and bacteria,” Biotechnology Letters, 15 (5). 521-526, 1993.
 
[73]  Watkinson, R. J., and P. Morgan, “Physiology of aliphatic hydrocarbon-degrading microorganisms,” Biodegradation, 1 (2). 79-92, 1990.
 
[74]  Azaizeh, H., P. M. L. Castro, and P. Kidd, “Biodegradation of Organic Xenobiotic Pollutants in the Rhizosphere” Organic Xenobiotics and Plants: From Mode of Action to Ecophysiology, Plant Ecophysiology P. Schröder and C. D. Collins, eds., pp. 191-215: Springer Netherlands, 2011.
 
[75]  Tewari, S., and N. K. Arora, “Transactions Among Microorganisms and Plant in the Composite Rhizosphere Habitat,” Plant Microbe Symbiosis: Fundamentals and Advances, N. K. Arora, ed., pp. 1-50, New Delhi: Springer India, 2013.
 
[76]  Khan, S., M. Afzal, S. Iqbal, and Q. M. Khan, “Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils,” Chemosphere, 90 (4). 1317-1332, 2013.
 
[77]  Ryan, R. P., K. Germaine, A. Franks, D. J. Ryan, and D. N. Dowling, “Bacterial endophytes: recent developments and applications,” FEMS Microbiology Letters, 278 (1). 1-9, 2008.
 
[78]  Santoyo, G., G. Moreno-Hagelsieb, M. del Carmen Orozco-Mosqueda, and B. R. Glick, “Plant growth-promoting bacterial endophytes,” Microbiological Research, 183 (Supplement C). 92-99, 2016.
 
[79]  Ahmad, F., I. Ahmad, and M. S. Khan, “Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities,” Microbiological Research, 163 (2). 173-181, 2008.
 
[80]  McGuinness, M., and D. Dowling, “Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil,” International Journal of Environmental Research and Public Health, 6 (8). 2226-2247, 2009.
 
[81]  Martin, B. C., S. J. George, C. A. Price, M. H. Ryan, and M. Tibbett, “The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions,” Science of the Total Environment, 472 642-653, 2014.
 
[82]  Rohrbacher, F., and M. St-Arnaud, “Root Exudation: The Ecological Driver of Hydrocarbon Rhizoremediation,” Agronomy, 6 (1). 19, 2016.
 
[83]  Surridge, A. K. J., F. C. Wehner, and T. E. Cloete, “Bioremediation of Polluted Soil,” Advances in Applied Bioremediation, A. Singh, R. C. Kuhad and O. P. Ward, eds., pp. 103-121, Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
 
[84]  Dzionek, A., D. Wojcieszyńska, and U. Guzik, “Natural carriers in bioremediation: A review,” Electronic Journal of Biotechnology, 23 (Supplement C). 28-36, 2016.
 
[85]  Zhang, Z., Z. Rengel, H. Chang, K. Meney, L. Pantelic, and R. Tomanovic, “Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs),” Geoderma, 175 1-8, 2012.
 
[86]  Peng, S., Q. Zhou, Z. Cai, and Z. Zhang, “Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment,” Journal of Hazardous Materials, 168 (2). 1490-1496, 2009.
 
[87]  Gerhardt, K. E., X. D. Huang, B. R. Glick, and B. M. Greenberg, “Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges,” Plant Science, 176 (1). 20-30, 2009.
 
[88]  Newman, L. A., and C. M. Reynolds, “Phytodegradation of organic compounds,” Current Opinion in Biotechnology, 15 (3). 225-230, 2004.
 
[89]  Spada, V., P. Iavazzo, R. Sciarrillo, and C. Guarino, “Successful Integrated Bioremediation System of Hydrocarbon-Contaminated Soil at a Former Oil Refinery Using Autochthonous Bacteria and Rhizo-Microbiota,” Phytoremediation: Management of Environmental Contaminants, Volume 5, A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza and L. Newman, eds., pp. 53-76, Cham: Springer International Publishing, 2017.
 
[90]  Afzal, M., S. Yousaf, T. G. Reichenauer, M. Kuffner, and A. Sessitsch, “Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel,” Journal of Hazardous Materials, 186 (2). 1568-1575, 2011.
 
[91]  Marihal, A. K., and K. S. Jagadeesh, “Plant–Microbe Interaction: A Potential Tool for Enhanced Bioremediation,” Plant Microbe Symbiosis: Fundamentals and Advances, N. K. Arora, ed., pp. 395-410, New Delhi: Springer India, 2013.
 
[92]  Gkorezis, P., M. Daghio, A. Franzetti, J. D. Van Hamme, W. Sillen, and J. Vangronsveld, “The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective,” Frontiers in Microbiology, 7 1836, 2016.
 
[93]  Curl, E. A., and B. Truelove, The rhizosphere, Berlin; New York: Springer-Verlag, 1986.
 
[94]  Marschner, H., Mineral nutrition of higher plants, 2nd ed., London: Academic Press, 1995.
 
[95]  Ryan, P. R., E. Delhaize, and D. L. Jones, “Function and Mechanism of Organic Anion Exudation from Plant Roots,” Annual Review of Plant Physiology and Plant Molecular Biology, 52 (1). 527-560, 2001.
 
[96]  Vokou, D., D. Chalkos, G. Karamanlidou, and M. Yiangou, “Activation of soil respiration and shift of the microbial population balance in soil as a response to Lavandula stoechas essential oil,” Journal of Chemical Ecology, 28 (4). 755-768, 2002.
 
[97]  Haby, P. A., and D. E. Crowley, “Biodegradation of 3-chlorobenzoate as affected by rhizodeposition and selected carbon substrates,” Journal of Environmental Quality, 25 (2). 304-310, 1996.
 
[98]  Donnelly, P. K., R. S. Hegde, and J. S. Fletcher, “Growth of PCB-degrading bacteria on compounds from photosynthetic plants,” Chemosphere, 28 (5). 981-988, 1994.
 
[99]  Hegde, R. S., and J. S. Fletcher, “Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology,” Chemosphere, 32 (12). 2471-2479, 1996.
 
[100]  Singer, A. C., D. E. Crowley, and I. P. Thompson, “Secondary plant metabolites in phytoremediation and biotransformation,” Trends in Biotechnology, 21 (3). 123-130, 2003.
 
[101]  Nannipieri, P., J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara, G. Renella, and F. Valori, "Effects of Root Exudates in Microbial Diversity and Activity in Rhizosphere Soils," Molecular Mechanisms of Plant and Microbe Coexistence, Soil Biology C. S. Nautiyal and P. Dion, eds., pp. 339-365: Springer Berlin Heidelberg, 2008.
 
[102]  Anderson, T. A., E. A. Guthrie, and B. T. Walton, “Bioremediation in the rhizosphere,” Environmental Science & Technology, 27 (13). 2630-2636, 1993.
 
[103]  Cohen, M. F., H. Yamasaki, and M. Mazzola, “Bioremediation of soils by plant-microbe systems,” International Journal of Green Energy, 1 (3). 301-312, 2004.
 
[104]  Sun, T.-R., L. Cang, Q.-Y. Wang, D.-M. Zhou, J.-M. Cheng, and H. Xu, “Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil,” Journal of Hazardous Materials, 176 (1-3). 919-925, 2010.
 
[105]  Rhodes, A. H., S. M. Owen, and K. T. Semple, “Biodegradation of 2,4-dichlorophenol in the presence of volatile organic compounds in soils under different vegetation types,” FEMS Microbiology Letters, 269 (2). 323-330, 2007.
 
[106]  Miya, R. K., and M. K. Firestone, “Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris,” Journal of Environmental Quality, 30 (6). 1911-1918, 2001.
 
[107]  Aprill, W., and R. C. Sims, “Evaluation of the Use of Prairie Grasses for Stimulating Polycyclic Aromatic Hydrocarbon Treatment in Soil,” Chemosphere, 20 (1-2). 253-265, 1990.
 
[108]  Nichols, T., D. Wolf, H. Rogers, C. Beyrouty, and C. Reynolds, “Rhizosphere microbial populations in contaminated soils,” Water, Air, & Soil Pollution, 95 (1). 165-178, 1997.
 
[109]  Gunther, T., U. Dornberger, and W. Fritsche, “Effects of ryegrass on biodegradation of hydrocarbons in soil,” Chemosphere, 33 (2). 203-215, 1996.
 
[110]  Phillips, L. A., C. W. Greer, R. E. Farrell, and J. J. Germida, “Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil,” Applied Soil Ecology, 52 (0). 56-64, 2012.
 
[111]  Phillips, L. A., J. J. Germida, R. E. Farrell, and C. W. Greer, “Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants,” Soil Biology and Biochemistry, 40 (12). 3054-3064, 2008.
 
[112]  Ying, X., G. Dongmei, L. Judong, and W. Zhenyu, “Plant-microbe Interactions to Improve Crude Oil Degradation,” Energy Procedia, 5 844-848, 2011.
 
[113]  Kumar, V., N. K. Aggarwal, and B. P. Singh, “Performance and persistence of phosphate solubilizingAzotobacter chroococcum in wheat rhizosphere,” Folia Microbiologica, 45 (4). 343-347, 2000.
 
[114]  Yao, X.-f., J.-m. Zhang, L. Tian, and J.-h. Guo, “The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China,” Brazilian Journal of Microbiology, 48 (1). 71-78, 2017.
 
[115]  Sandaa, R. A., V. Torsvik, and Ø. Enger, “Influence of long-term heavy-metal contamination on microbial communities in soil,” Soil Biology and Biochemistry, 33 (3). 287-295, 2001.
 
[116]  Kumar, V., P. Teotia, S. Bisht, and S. Sharma, "Biotrophic Plant-Microbe Interactions for Land Reclamation and Sustainable Agriculture Development," Plant Microbes Symbiosis: Applied Facets, N. K. Arora, ed., pp. 77-94, New Delhi: Springer India, 2015.
 
[117]  Marques, A. P. G. C., A. O. S. S. Rangel, and P. M. L. Castro, “Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology,” Critical Reviews in Environmental Science and Technology, 39 (8). 622-654, 2009.
 
[118]  Crowley, D. E., E. Luepromechai, and A. Singer, “Metabolism of Xenobiotics in the Rhizosphere,” Pesticide Biotransformation in Plants and Microorganisms: similarities and divergences, ACS Symposium Series 777, J. C. Hall, R. E. Hoagland and R. M. Zablotowicz, eds., pp. 333-352: American Chemical Society, 2000.
 
[119]  Suresh, B., and G. A. Ravishankar, “Phytoremediation - a novel and promising approach for environmental clean-up,” Critical Reviews in Biotechnology, 24 (2-3). 97-124, 2004.
 
[120]  Chaudhry, Q., M. Blom-Zandstra, S. Gupta, and E. J. Joner, “Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment,” Environmental Science and Pollution Research, 12 (1). 34-48, 2005.
 
[121]  Fester, T., J. Giebler, L. Y. Wick, D. Schlosser, and M. Kästner, “Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants,” Current Opinion in Biotechnology, 27 (0). 168-175, 2014.
 
[122]  Coulon, F., K. J. Brassington, R. Bazin, P. E. Linnet, K. A. Thomas, T. R. Mitchell, G. Lethbridge, J. W. N. Smith, and S. J. T. Pollard, “Effect of fertilizer formulation and bioaugmentation on biodegradation and leaching of crude oils and refined products in soils,” Environmental Technology, 33 (16). 1879-1893, 2012.
 
[123]  Siciliano, S. D., and J. J. Germida, “Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil,” Environmental Toxicology and Chemistry, 16 (6). 1098-1104, 1997.
 
[124]  Siciliano, S. D., and J. J. Germida, “Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria,” Environmental Reviews, 6 65-79, 1998.
 
[125]  Madsen, E. L., “Epistemology of environmental microbiology,” Environmental Science & Technology, 32 (4). 429-439, 1998.
 
[126]  Tadesse, B., J. D. Donaldson, and S. M. Grimes, “Contaminated and polluted land: A general review of decontamination management and control,” Journal of Chemical Technology and Biotechnology, 60 (3). 227-240, 1994.
 
[127]  Lynch, J. M., and A. J. Moffat, “Bioremediation – prospects for the future application of innovative applied biological research,” Annals of Applied Biology, 146 (2). 217-221, 2005.
 
[128]  Tang, J. C., R. G. Wang, X. W. Niu, M. Wang, H. R. Chu, and Q. X. Zhou, “Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of different influencing factors,” Biogeosciences, 7 (12). 3961-3969, 2010.
 
[129]  Cookson, J. T., Bioremediation engineering: design and application, New York: McGraw-Hill, 1995.
 
[130]  Author ed.^eds., “Bioremediation Principles ”, 2nd ed., Boston: McGraw-Hill, 1998, p.^pp. Pages.
 
[131]  Pavel, L. V., and M. Gavrilescu, “Overview of ex situ decontamination techniques for soil cleanup,” Environmental Engineering and Management Journal, 7 (6). 815-834, 2008.
 
[132]  Ayotamuno, M. J., R. B. Kogbara, S. O. T. Ogaji, and S. D. Probert, “Bioremediation of a crude-oil polluted agricultural-soil at Port Harcourt, Nigeria,” Applied Energy, 83 (11). 1249-1257, 2006.
 
[133]  Kaplan, C. W., and C. L. Kitts, “Bacterial succession in a petroleum land treatment unit,” Applied and Environmental Microbiology, 70 (3). 1777-1786, 2004.
 
[134]  MacNaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White, “Microbial population changes during bioremediation of an experimental oil spill,” Applied and Environmental Microbiology, 65 (8). 3566-3574, 1999.
 
[135]  Hazen, T. C., “Biostimulation,” Handbook of hydrocarbon and lipid microbiology, K. N. Timmis, T. McGenity, J. R. v. d. Meer and V. d. Lorenzo, eds., pp. 4517-4530, Berlin: Springer, 2010.
 
[136]  Kogbara, R. B., “Ranking agro-technical methods and environmental parameters in the biodegradation of petroleum-contaminated soils in Nigeria,” Electronic Journal of Biotechnology, 11 (1). 2008.
 
[137]  Rhykerd, R., B. Crews, K. McInnes, and R. W. Weaver, “Impact of bulking agents, forced aeration, and tillage on remediation of oil-contaminated soil,” Bioresource Technology, 67 (3). 279-285, 1999.
 
[138]  Rosenberg, E., R. Legmann, A. Kushmaro, R. Taube, E. Adler, and E. Z. Ron, “Petroleum bioremediation - a multiphase problem,” Biodegradation, 3 (2). 337-350, 1992.
 
[139]  Sarkar, D., M. Ferguson, R. Datta, and S. Birnbaum, “Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation,” Environmental Pollution, 136 (1). 187-195, 2005.
 
[140]  Suja, F., F. Rahim, M. R. Taha, N. Hambali, M. Rizal Razali, A. Khalid, and A. Hamzah, “Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations,” International Biodeterioration & Biodegradation, 90 115-122, 2014.
 
[141]  Bento, F. M., F. A. O. Camargo, B. C. Okeke, and W. T. Frankenberger, “Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation,” Bioresource Technology, 96 (9). 1049-1055, 2005.
 
[142]  Andreolli, M., S. Lampis, P. Brignoli, and G. Vallini, “Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: A comparative study,” Journal of Environmental Management, 153 121-131, 2015.
 
[143]  Wu, M., W. A. Dick, W. Li, X. Wang, Q. Yang, T. Wang, L. Xu, M. Zhang, and L. Chen, “Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil,” International Biodeterioration & Biodegradation, 107 158-164, 2016.
 
[144]  Ayotamuno, J., R. Kogbara, and O. Agoro, “Biostimulation supplemented with phytoremediation in the reclamation of a petroleum contaminated soil,” World Journal of Microbiology and Biotechnology, 25 (9). 1567-1572, 2009.
 
[145]  Odokwuma, L. O., and A. A. Dickson, “Bioremediation of a crude-oil polluted tropical mangrove environment,” Journal of Applied Sciences & Environmental Management, 7 (2). 23-29, 2003.
 
[146]  Tanee, F. B. G., and P. D. S. Kinako, “Comparative Studies of Biostimulation and Phytoremediation in the Mitigation of Crude Oil Toxicity in Tropical Soil,” Journal of Applied Science and Environmental Management, 12 (2). 143 - 147, 2008.
 
[147]  Adesodun, J. K., and J. S. C. Mbagwu, “Biodegradation of waste-lubricating petroleum oil in a tropical alfisol as mediated by animal droppings,” Bioresource Technology, 99 (13). 5659-5665, 2008.
 
[148]  Chaineau, C.-H., T. E. P. Indonesie, J.-F. Vidalie, T. DGEP, U. S. Hamzah, B. MIGAS, G. A. Suripno, M. Najib, and T. E. P. Indonesie, “Bioremediation of Oil-Based Drill Cuttings under Tropical Conditions,” in SPE 13th Middle east Oil Show & Conference, 9-12 June 2003, Bahrain, Bahrain, 2003.
 
[149]  Perfumo, A., I. M. Banat, F. Canganella, and R. Marchant, “Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1,” Applied Microbiology and Biotechnology, 72 (1). 132-138, 2006.
 
[150]  Trindade, P. V. O., L. G. Sobral, A. C. L. Rizzo, S. G. F. Leite, and A. U. Soriano, “Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study,” Chemosphere, 58 (4). 515-522, 2005.
 
[151]  Whyte, L. G., B. Goalen, J. Hawari, D. Labbé, C. W. Greer, and M. Nahir, “Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunavut,” Cold Regions Science and Technology, 32 (2-3). 121-132, 2001.
 
[152]  Bragg, J. R., R. C. Prince, E. J. Harner, and R. M. Atlas, “Effectiveness of bioremediation for the Exxon Valdez oil spill,” Nature, 368 (6470). 413-418, 1994.
 
[153]  Swanell, R. P. J., and I. M. Head, “Bioremediation come of age,” Nature(368). 396-397, 1994.
 
[154]  Lee, K., and E. M. Levy, “Enhancement of the natural biodegradation of condensate and crude oil on beaches of Atlantic Canada ” in Proceedings of the 1989 Oil Spill Conference, Washington, DC, 1989, pp. 479-486.
 
[155]  Lee, K., and E. M. Levy, “Bioremediation: Waxy crude oils stranded on low-energy shorelines,” in Proceedings of the 1991 Oil Spill Conference Washington, DC, 1991, pp. 541-554.
 
[156]  Lee, K., T. Lunel, P. Wood, R. Swannell, and P. Stoffyn-Egli, “Shoreline cleanup by acceleration of clay-oil flocculation processes,” in Proceedings of 1997 International Oil Spill Conference, Washington, DC, 1997, pp. 235-240.
 
[157]  Lee, K., G. H. Tremblay, and S. E. Cobanli, “Bioremediation of oiled beach sediments: assessment of inorganic and organic fertilizers” in Proceedings of 1995 Oil Spill Conference, Washington, DC 1995, pp. 107-113.
 
[158]  Lee, K., and G. H. Trembley, “Bioremediation: application of slow-release fertilizers on low energy shorelines,” in Proceedings of the 1993 Oil Spill Conference, Washington, DC, 1993, pp. 449-454.
 
[159]  Fernandez-Alvarez, P., J. Vila, J. M. Garrido-Fernandez, M. Grifoll, and J. M. Lema, “Trials of bioremediation on a beach affected by the heavy oil spill of the Prestige,” Journal of Hazardous Materials, 137 (3). 1523-1531, 2006.
 
[160]  Nyman, J. A., “Effect of Crude Oil and Chemical Additives on Metabolic Activity of Mixed Microbial Populations in Fresh Marsh Soils,” Microbial Ecology, 37 (2). 152-162, 1999.
 
[161]  Fernández-Luqueño, F., F. López-Valdez, C. Pérez-Morales, S. García-Mayagoitia, C. R. Sarabia-Castillo, and S. R. Pérez-Ríos, “Enhancing Decontamination of PAHs-Polluted Soils: Role of Organic and Mineral Amendments,” Enhancing Cleanup of Environmental Pollutants: Volume 2: Non-Biological Approaches, N. A. Anjum, S. S. Gill and N. Tuteja, eds., pp. 339-368, Cham: Springer International Publishing, 2017.
 
[162]  Baldantoni, D., R. Morelli, A. Bellino, M. V. Prati, A. Alfani, and F. De Nicola, “Anthracene and benzo(a)pyrene degradation in soil is favoured by compost amendment: Perspectives for a bioremediation approach,” Journal of Hazardous Materials, 339 (Supplement C). 395-400, 2017.
 
[163]  Alotaibi, H. S., A. R. Usman, A. S. Abduljabbar, Y. S. Ok, A. I. Al-Faraj, A. S. Sallam, and M. I. Al-Wabel, “Carbon mineralization and biochemical effects of short-term wheat straw in crude oil contaminated sandy soil,” Applied Geochemistry, 2017.
 
[164]  Agarry, S. E., C. N. Owabor, and R. O. Yusuf, “Bioremediation of Soil Artificially Contaminated with Petroleum Hydrocarbon Oil Mixtures: Evaluation of the Use of Animal Manure and Chemical Fertilizer,” Bioremediation Journal, 14 (4). 189 - 195, 2010.
 
[165]  Agamuthu, P., Y. S. Tan, and S. H. Fauziah, “Bioremediation of Hydrocarbon Contaminated Soil Using Selected Organic Wastes,” Procedia Environmental Sciences, 18 694-702, 2013.
 
[166]  Macci, C., S. Doni, E. Peruzzi, C. Mennone, and G. Masciandaro, “Biostimulation of Soil Microbial Activity Through Organic Fertilizer and Almond tree Association,” Land Degradation & Development, 27 (2). 335-345, 2016.
 
[167]  Nwankwegu, A. S., M. U. Orji, and C. O. Onwosi, “Studies on organic and in-organic biostimulants in bioremediation of diesel-contaminated arable soil,” Chemosphere, 162 148-156, 2016.
 
[168]  Ueno, A., Y. Ito, I. Yumoto, and H. Okuyama, “Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation,” World Journal of Microbiology and Biotechnology, 23 (12). 1739-1745, 2007.
 
[169]  Forsyth, J. V., Y. M. Tsao, and R. D. Blem, “Bioremediation: when is augmentation needed,” Bioaugmentation for Site Remediation R. E. Hinchee, J. Fredrickson and B. C. Alleman, eds., pp. 1-14, Columbus, OH: Battelle Press 1995.
 
[170]  Mrozik, A., and Z. Piotrowska-Seget, “Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds,” Microbiological Research, 165 (5). 363-375, 2010.
 
[171]  Vogel, T. M., “Bioaugmentation as a soil bioremediation approach,” Current Opinion in Biotechnology, 7 (3). 311-316, 1996.
 
[172]  Ayotamuno, J. M., R. N. Okparanma, and P. P. Araka, “Bioaugmentation and composting of oil-field drill-cuttings containing polycyclic aromatic hydrocarbons (PAHs),” Journal of Food Agriculture & Environment, 7 (2). 658-664, 2009.
 
[173]  Ayotamuno, M. J., R. N. Okparanma, E. K. Nweneka, S. O. T. Ogaji, and S. D. Probert, “Bio-remediation of a sludge containing hydrocarbons,” Applied Energy, 84 (9). 936-943, 2007.
 
[174]  Abdulsalam, S., and A. B. Omale, “Comparison of biostimulation and bioaugmentation techniques for the remediation of used motor oil contaminated soil,” Brazilian Archives of Biology and Technology, 52 747-754, 2009.
 
[175]  George-Okafor, U., F. Tasie, and F. Muotoe-Okafor, “Hydrocarbon Degradation Potentials of Indigenous Fungal Isolates from Petroleum Contaminated Soils,” Journal of Physical and Natural Sciences, 3 (1). 1-6, 2009.
 
[176]  Nwachukwu, S. U., “Bioremediation of Sterile Agricultural Soils Polluted with Crude Petroleum by Application of the Soil Bacterium, Pseudomonas putida, with Inorganic Nutrient Supplementations,” Current Microbiology, 42 (4). 231-236, 2001.
 
[177]  Oboh, B. O., M. O. Ilori, J. O. Akinyemi, and S. A. Adebusoye, “Hydrocarbon Degrading Potentials of Bacteria Isolated from a Nigerian Bitumen (Tarsand) Deposit,” Nature and Science, 4 (3). 51-57, 2006.
 
[178]  Ojo, O. A., “Petroleum-hydrocarbon utilization by native bacterial population from a wastewater canal Southwest Nigeria,” African Journal of Biotechnology, 5 (4). 333-337, 2006.
 
[179]  Okoh, A. I., “Biodegradation of Bonny light crude oil in soil microcosms by some bacterial strains isolated from crude oil flow stations saver pits in Nigeria,” African Journal of Biotechnology, 2 (5). 104-108, 2003.
 
[180]  Okparanma, R. N., M. J. Ayotamuno, and P. P. Araka, “Bioremediation of hydrocarbon contaminated-oil field drill-cuttings with bacterial isolates,” African Journal of Environmental Science and Technology, 3 (5). 131–140, 2009.
 
[181]  Ojumu, T. V., O. O. Bello, J. A. Sonibare, and B. O. Solomon, “Evaluation of microbial systems for bioremediation of petroleum refinery effluents in Nigeria,” African Journal of Biotechnology, 4 (1). 31-35, 2005.
 
[182]  Odjadjare, E. E. O., S. O. Ajisebutu, E. O. Igbinosa, O. A. Aiyegoro, M. R. Trejo-Hernandez, and A. I. Okoh, “Escravos light crude oil degrading potentials of axenic and mixed bacterial cultures,” Journal of General and Applied Microbiology, 54 (5). 277-284, 2008.
 
[183]  Jiang, Y., K. J. Brassington, G. Prpich, G. I. Paton, K. T. Semple, S. J. T. Pollard, and F. Coulon, “Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation,” Chemosphere, 161 300-307, 2016.
 
[184]  Nwankwegu, A. S., and C. O. Onwosi, “Bioremediation of gasoline contaminated agricultural soil by bioaugmentation,” Environmental Technology & Innovation, 7 1-11, 2017.
 
[185]  Poi, G., A. Aburto-Medina, P. C. Mok, A. S. Ball, and E. Shahsavari, “Large scale bioaugmentation of soil contaminated with petroleum hydrocarbons using a mixed microbial consortium,” Ecological Engineering, 102 64-71, 2017.
 
[186]  Al-Kharusi, S., R. M. M. Abed, and S. Dobretsov, “Changes in respiration activities and bacterial communities in a bioaugmented oil-polluted soil in response to the addition of acyl homoserine lactones,” International Biodeterioration & Biodegradation, 107 165-173, 2016.
 
[187]  Gargouri, B., F. Karray, N. Mhiri, F. Aloui, and S. Sayadi, “Bioremediation of petroleum hydrocarbons-contaminated soil by bacterial consortium isolated from an industrial wastewater treatment plant,” Journal of Chemical Technology and Biotechnology, 89 (7). 978-987, 2014.
 
[188]  Jiao, H., J. Luo, Y. Zhang, S. Xu, Z. Bai, and Z. Huang, “Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants,” Pak J Pharm Sci, 28 (5 Suppl). 1881-1886, 2015.
 
[189]  Ijoma, G. N., and M. Tekere, “Potential microbial applications of co-cultures involving ligninolytic fungi in the bioremediation of recalcitrant xenobiotic compounds,” International Journal of Environmental Science and Technology, 14 (8). 1787-1806, 2017.
 
[190]  Ghazali, F. M., R. N. Z. A. Rahman, A. B. Salleh, and M. Basri, “Biodegradation of hydrocarbons in soil by microbial consortium,” International Biodeterioration & Biodegradation, 54 (1). 61-67, 2004.
 
[191]  Sathishkumar, M., A. R. Binupriya, S.-H. Baik, and S.-E. Yun, “Biodegradation of Crude Oil by Individual Bacterial Strains and a Mixed Bacterial Consortium Isolated from Hydrocarbon Contaminated Areas,” CLEAN - Soil, Air, Water, 36 (1). 92-96, 2008.
 
[192]  Cerqueira, V. S., E. B. Hollenbach, F. Maboni, M. H. Vainstein, F. A. O. Camargo, M. d. C. R. Peralba, and F. M. Bento, “Biodegradation potential of oily sludge by pure and mixed bacterial cultures,” Bioresource Technology, 102 (23). 11003-11010, 2011.
 
[193]  Alkorta, I., and C. Garbisu, “Phytoremediation of organic contaminants in soils,” Bioresource Technology, 79 (3). 273-276, 2001.
 
[194]  Reichenauer, Thomas G., and James J. Germida, “Phytoremediation of Organic Contaminants in Soil and Groundwater,” Chemistry & Sustainability, Energy & Materials 1(8-9). 708-717, 2008.
 
[195]  Arthur, E. L., P. J. Rice, P. J. Rice, T. A. Anderson, S. M. Baladi, K. L. D. Henderson, and J. R. Coats, “Phytoremediation—An Overview,” Critical Reviews in Plant Sciences, 24 (2). 109-122, 2005.
 
[196]  Hughes, J. B., J. Shanks, M. Vanderford, J. Lauritzen, and R. Bhadra, “Transformation of TNT by Aquatic Plants and Plant Tissue Cultures,” Environmental Science & Technology, 31 (1). 266-271, 1996.
 
[197]  Susarla, S., V. F. Medina, and S. C. McCutcheon, “Phytoremediation: An ecological solution to organic chemical contamination,” Ecological Engineering, 18 (5). 647-658, 2002.
 
[198]  Kumar, R., A. Das, and S. Lal, “Petroleum Hydrocarbon Stress Management in Soil Using Microorganisms and Their Products,” Environmental Waste Management, R. Chandra, ed., pp. 525-550, Boca Raton: CRC Press, 2016.
 
[199]  McCutcheon, S. C., and J. L. Schnoor, “Overview of Phytotransformation and Control of Wastes,” Phytoremediation: Transformation and Control of Contaminants, S. C. McCutcheon and J. L. Schnoor, eds., pp. 1-58: John Wiley & Sons, Inc., 2004.
 
[200]  Greipsson, S., “Phytoremediation,” Nature Education Knowledge, 3 (10). 7, 2011.
 
[201]  Dickinson, N., “Phytoremediation,” Encyclopedia of Applied Plant Sciences (Second Edition), B. G. Murray and D. J. Murphy, eds., pp. 327-331, Oxford: Academic Press, 2017.
 
[202]  Marmiroli, N., and S. C. McCutcheon, “Making Phytoremediation a Successful Technology,” Phytoremediation: Transformation and Control of Contaminants, S. C. McCutcheon and J. L. Schnoor, eds., pp. 85-119: John Wiley & Sons, Inc., 2004.
 
[203]  Al-Baldawi, I. A., S. R. S. Abdullah, N. Anuar, F. Suja, and I. Mushrifah, “Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus,” Ecological Engineering, 74 463-473, 2015.
 
[204]  Lee, J. H., “An overview of phytoremediation as a potentially promising technology for environmental pollution control,” Biotechnology and Bioprocess Engineering, 18 (3). 431-439, 2013.
 
[205]  Shiri, M., M. Rabhi, C. Abdelly, and A. E. Amrani, “The halophytic model plant Thellungiella salsuginea exhibited increased tolerance to phenanthrene-induced stress in comparison with the glycophitic one Arabidopsis thaliana: Application for phytoremediation,” Ecological Engineering, 74 125-134, 2015.
 
[206]  Limmer, M., and J. Burken, “Phytovolatilization of Organic Contaminants,” Environmental Science & Technology, 50 (13). 6632-6643, 2016.
 
[207]  Siciliano, S. D., and J. J. Germida, “Enhanced phytoremediation of chlorobenzoates in rhizosphere soil,” Soil Biology and Biochemistry, 31 (2). 299-305, 1999.
 
[208]  Banks, M. K., E. Lee, and A. P. Schwab, “Evaluation of Dissipation Mechanisms for Benzo[a]pyrene in the Rhizosphere of Tall Fescue,” J Environ Qual, 28 (1). 294-298, 1999.
 
[209]  Masu, S., M. Albulescu, and L.-C. Balasescu, “Assessment on phytoremediation of crude oil polluted soils with Achillea millefolium and total petroleum hydrocarbons removal efficiency,” Rev Chimie, 65 1103-1107, 2014.
 
[210]  Hong, M. S., W. F. Farmayan, I. J. Dortch, C. Y. Chiang, S. K. McMillan, and J. L. Schnoor, “Phytoremediation of MTBE from a Groundwater Plume,” Environmental Science & Technology, 35 (6). 1231-1239, 2001.
 
[211]  Schneider, K., J. Oltmanns, T. Radenberg, T. Schneider, and D. Pauly-Mundegar, “Uptake of nitroaromatic compounds in plants,” Environmental Science and Pollution Research, 3 (3). 135-138, 1996.
 
[212]  Garcia, C., A. Roldan, and T. Hernandez, “Changes in Microbial Activity after Abandonment of Cultivation in a Semiarid Mediterranean Environment,” Journal of Environmental Quality, 26 (1). 285-292, 1997.
 
[213]  Siciliano, S. D., H. Goldie, and J. J. Germida, “Enzymatic Activity in Root Exudates of Dahurian Wild Rye (Elymus dauricus) That Degrades 2-Chlorobenzoic Acid,” Journal of Agricultural and Food Chemistry, 46 (1). 5-7, 1998.
 
[214]  Oliveira, V., N. C. M. Gomes, A. Almeida, A. M. S. Silva, H. Silva, and Â. Cunha, “Microbe-Assisted Phytoremediation of Hydrocarbons in Estuarine Environments,” Microbial Ecology, 69 (1). 1-12, 2015.
 
[215]  Shahsavari, E., E. M. Adetutu, and A. S. Ball, “Phytoremediation and Necrophytoremediation of Petrogenic Hydrocarbon-Contaminated Soils,” Phytoremediation: Management of Environmental Contaminants, Volume 2, A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza and L. Newman, eds., pp. 321-334, Cham: Springer International Publishing, 2015.
 
[216]  Yavari, S., A. Malakahmad, and N. B. Sapari, “A Review on Phytoremediation of Crude Oil Spills,” Water, Air, & Soil Pollution, 226 (8). 279, 2015.
 
[217]  Bert, V., P. Seuntjens, W. Dejonghe, S. Lacherez, H. Thuy, and B. Vandecasteele, “Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites,” Environmental Science and Pollution Research, 16 (7). 745-764, 2009.
 
[218]  Salt, D. E., R. D. Smith, and I. Raskin, “Phytoremediation,” Annual Review of Plant Physiology and Plant Molecular Biology, 49 (1). 643-668, 1998.
 
[219]  Sadowsky, M. J., "Phytoremediation: past promises and future practices." pp. 1-7.
 
[220]  Schnoor, J. L., L. A. Light, S. C. McCutcheon, N. L. Wolfe, and L. H. Carreia, “Phytoremediation of organic and nutrient contaminants,” Environmental Science & Technology, 29 (7). 318A-323A, 1995.
 
[221]  Schnoor, J., "Phytoremediation: Technology Evaluation Report (TE-98-01). Groundwater Remediation Technologies Analysis Center," 1997.
 
[222]  Eapen, S., and S. F. D'Souza, “Prospects of genetic engineering of plants for phytoremediation of toxic metals,” Biotechnology Advances, 23 (2). 97-114, 2005.
 
[223]  Schwab, A. P., and M. K. Banks, "Biologically Mediated Dissipation of Polyaromatic Hydrocarbons in the Root Zone," Bioremediation through Rhizosphere Technology, ACS Symposium Series 563, T. A. Anderson and J. R. Coats, eds., pp. 132-141: American Chemical Society, 1994.
 
[224]  Njoku, K. L., M. O. Akinola, and B. O. Oboh, “Phytoremediation of crude oil contaminated soil: The effect of growth of Glycine max on the physico-chemistry and crude oil contents of soil,” Nature and Science, 7 (10). 79-87, 2009.
 
[225]  Merkl, N., R. Schultze-Kraft, and C. Infante, “Assessment Of Tropical Grasses And Legumes For Phytoremediation Of Petroleum-Contaminated Soils,” Water, Air, and Soil Pollution, 165 (1). 195-209, 2005.
 
[226]  Cunningham, S. D., T. A. Anderson, A. P. Schwab, and F. C. Hsu, “Phytoremediation of Soils Contaminated with Organic Pollutants,” Advances in Agronomy, L. S. Donald, ed., pp. 55-114: Academic Press, 1996.
 
[227]  Cunningham, S. D., W. R. Berti, and J. W. Huang, “Phytoremediation of contaminated soils,” Trends in Biotechnology, 13 (9). 393-397, 1995.
 
[228]  Collins, C. D., “Implementing Phytoremediation of Petroleum Hydrocarbons,” Phytoremediation: Methods and Reviews, N. Willey, ed., pp. 99-108, Totowa, NJ: Humana Press, 2007.
 
[229]  Hutchinson, S. L., M. K. Banks, and A. P. Schwab, “Phytoremediation of Aged Petroleum Sludge: Effect of Inorganic Fertilizer,” Journal of Environment Quality, 30 (2). 395-403, 2001.
 
[230]  White, P., D. Wolf, G. Thoma, and C. Reynolds, “Phytoremediation of Alkylated Polycyclic Aromatic Hydrocarbons in a Crude Oil-Contaminated Soil,” Water, Air, & Soil Pollution, 169 (1). 207-220, 2006.
 
[231]  Wiltse, C. C., W. L. Rooney, Z. Chen, A. P. Schwab, and M. K. Banks, “Greenhouse Evaluation of Agronomic and Crude Oil-Phytoremediation Potential among Alfalfa Genotypes,” Journal of Environmental Quality, 27 (1). 169-173, 1998.
 
[232]  Lu, M., Z. Zhang, S. Sun, X. Wei, Q. Wang, and Y. Su, “The Use of Goosegrass (Eleusine indica) to Remediate Soil Contaminated with Petroleum,” Water, Air, & Soil Pollution, 209 (1). 181-189, 2010.
 
[233]  Ayotamuno, J. M., R. B. Kogbara, and P. N. Egwuenum, “Comparison of corn and elephant grass in the phytoremediation of a petroleum-hydrocarbon-contaminated agricultural soil in Port Harcourt, Nigeria,” Journal of Food, Agriculture & Environment, 4 (3,4). 2006.
 
[234]  Xia, H. P., “Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land,” Chemosphere, 54 (3). 345-353, 2004.
 
[235]  Khan, A. G., “Role of Vetiver Grass and Arbuscular Mycorrhizal Fungi in Improving Crops Against Abiotic Stresses,” Salinity and Water Stress: Improving Crop Efficiency, M. Ashraf, M. Ozturk and H. R. Athar, eds., pp. 111-116, Dordrecht: Springer Netherlands, 2009.
 
[236]  Truong, P., and D. Baker, “Vetiver grass for the stabilization and rehabilitation of acid sulfate soils.” pp. 196-198.
 
[237]  Truong, P., and J. Claridge, “Effect of heavy metals toxicities on vetiver growth,” Bangkok, Thailand: Vetiver Newsletter. (15). 1996.
 
[238]  Frick, C. M., J. J. Germida, and R. E. Farrell, “Assessment of Phytoremediation as an In-Situ Technique for Cleaning Oil-contaminated Sites.,” Technical Seminar on Chemical Spills, 16 105a-124a, 1999.
 
[239]  Kaimi, E., T. Mukaidani, and M. Tamaki, “Screening of Twelve Plant Species for Phytoremediation of Petroleum Hydrocarbon-Contaminated Soil,” Plant Production Science, 10 (2). 211-218, 2007.
 
[240]  Chaineau, C. H., J. L. Morel, and J. Oudot, “Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize,” Journal of Environmental Quality, 29 (2). 569-578, 2000.
 
[241]  Kirk, J. L., J. N. Klirnomos, H. Lee, and J. T. Trevors, “Phytotoxicity Assay to Assess Plant Species for Phytoremediation of Petroleum-Contaminated Soil,” Bioremediation Journal, 6 (1). 57-63, 2002.
 
[242]  Banks, M. K., P. Kulakow, A. P. Schwab, Z. Chen, and K. Rathbone, “Degradation of Crude Oil in the Rhizosphere of Sorghum bicolor,” International Journal of Phytoremediation, 5 (3). 225-234, 2003.
 
[243]  Moubasher, H. A., A. K. Hegazy, N. H. Mohamed, Y. M. Moustafa, H. F. Kabiel, and A. A. Hamad, “Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms,” International Biodeterioration & Biodegradation, 98 (Supplement C). 113-120, 2015.
 
[244]  Meeinkuirt, W., M. Kruatrachue, P. Tanhan, R. Chaiyarat, and P. Pokethitiyook, “Phytostabilization Potential of Pb Mine Tailings by Two Grass Species, Thysanolaena maxima and Vetiveria zizanioides,” Water, Air, & Soil Pollution, 224 (10). 1750, 2013.
 
[245]  Cherian, S., and M. M. Oliveira, “Transgenic Plants in Phytoremediation: Recent Advances and New Possibilities,” Environmental Science & Technology, 39 (24). 9377-9390, 2005.
 
[246]  Binet, P., J. M. Portal, and C. Leyval, “Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass,” Soil Biology & Biochemistry, 32 (14). 2011-2017, 2000.
 
[247]  Yoshitomi, K. J., and J. R. Shann, “Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization,” Soil Biology and Biochemistry, 33 (12–13). 1769-1776, 2001.
 
[248]  Shann, J. R., and J. J. Boyle, “Influence of Plant Species on In Situ Rhizosphere Degradation,” Bioremediation through Rhizosphere Technology, ACS Symposium Series T. A. Anderson and J. R. Coats, eds., pp. 70-81, Washington DC: American Chemical Society, 1994.
 
[249]  Corgie, S. C., T. Beguiristain, and C. Leyval, “Spatial distribution of bacterial communities and phenanthrene degradation in the rhizosphere of Lolium perenne L,” Applied and Environmental Microbiology, 70 (6). 3552-3557, 2004.
 
[250]  Corgie, S. C., F. Fons, T. Beguiristain, and C. Leyval, “Biodegradation of phenanthrene, spatial distribution of bacterial populations and dioxygenase expression in the mycorrhizosphere of Lolium perenne inoculated with Glomus mosseae,” Mycorrhiza, 16 (3). 207-212, 2006.
 
[251]  Joner, E. J., S. C. Corgie, N. Amellal, and C. Leyval, “Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere,” Soil Biology & Biochemistry, 34 (6). 859-864, 2002.
 
[252]  Fletcher, J. S., and R. S. Hegde, “Release of phenols by perennial plant roots and their potential importance in bioremediation,” Chemosphere, 31 (4). 3009-3016, 1995.
 
[253]  Gilbert, E. S., and D. E. Crowley, “Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B,” Applied and Environmental Microbiology, 63 (5). 1933-1938, 1997.
 
[254]  Focht, D. D., “Strategies for the improvement of aerobic metabolism of polychlorinated biphenyls,” Current Opinion in Biotechnology, 6 (3). 341-346, 1995.
 
[255]  Badri, D. V., V. M. Loyola-Vargas, C. D. Broeckling, and J. M. Vivanco, “Root Secretion of Phytochemicals in Arabidopsis Is Predominantly Not Influenced by Diurnal Rhythms,” Molecular Plant, 3 (3). 491-498, 2010.
 
[256]  Badri, D. V., and J. M. Vivanco, “Regulation and function of root exudates,” Plant, Cell & Environment, 32 (6). 666-681, 2009.
 
[257]  Hinsinger, P., G. R. Gobran, P. J. Gregory, and W. W. Wenzel, “Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes,” New Phytologist, 168 (2). 293-303, 2005.
 
[258]  Bais, H. P., T. L. Weir, L. G. Perry, S. Gilroy, and J. M. Vivanco, “The role of root exudates in rhizosphere interactions with plants and other organisms,” Annual Review of Plant Biology, 57 (1). 233-266, 2006.
 
[259]  Narasimhan, K., C. Basheer, V. B. Bajic, and S. Swarup, “Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls,” Plant Physiology, 132 (1). 146-153, 2003.
 
[260]  Aoki, T., T. Akashi, and S.-i. Ayabe, “Flavonoids of Leguminous Plants: Structure, Biological Activity, and Biosynthesis,” Journal of Plant Research, 113 (4). 475-488, 2000.
 
[261]  Cesco, S., G. Neumann, N. Tomasi, R. Pinton, and L. Weisskopf, “Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition,” Plant and Soil, 329 (1). 1-25, 2010.
 
[262]  Misra, G., and S. G. Pavlostathis, “Biodegradation kinetics of monoterpenes in liquid and soil-slurry systems,” Applied Microbiology and Biotechnology, 47 (5). 572-577, 1997.
 
[263]  Misra, G., S. G. Pavlostathis, E. M. Perdue, and R. Araujo, “Aerobic biodegradation of selected monoterpenes,” Applied Microbiology and Biotechnology, 45 (6). 831-838, 1996.
 
[264]  Insam, H., and M. S. A. Seewald, “Volatile organic compounds (VOCs) in soils,” Biology and Fertility of Soils, 46 (3). 199-213, 2010.
 
[265]  Hernandez, B., S. C. Koh, M. Chial, and D. D. Focht, “Biotransformation of polychlorinated biphenyls in soil by addition of terpenes,” International Biodeterioration & Biodegradation, 37 (3-4). 257-258, 1996.
 
[266]  Hernandez, B. S., S. C. Koh, M. Chial, and D. D. Focht, “Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil,” Biodegradation, 8 (3). 153-158, 1997.
 
[267]  Tandlich, R., B. Brezna, and K. Dercova, “The effect of terpenes on the biodegradation of polychlorinated biphenyls by Pseudomonas stutzeri,” Chemosphere, 44 (7). 1547-1555, 2001.
 
[268]  Erickson, L. E., “An Overview of Research on the Beneficial Effects of Vegetation in Contaminated Soila,” Annals of the New York Academy of Sciences, 829 (1). 30-35, 1997.
 
[269]  Singh, R. P., G. Dhania, A. Sharma, and P. K. Jaiwal, “Biotechnological Approaches to Improve Phytoremediation Efficiency for Environment Contaminants,” Environmental Bioremediation Technologies, S. N. Singh and R. D. Tripathi, eds., pp. 223-258, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
 
[270]  Pokethitiyook, P., “Phytoremediation of Petroleum-Contaminated Soil in Association with Soil Bacteria,” Phytoremediation: Management of Environmental Contaminants, Volume 5, A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza and L. Newman, eds., pp. 77-99, Cham: Springer International Publishing, 2017.
 
[271]  Cook, R. L., and D. Hesterberg, “Comparison of Trees and Grasses for Rhizoremediation of Petroleum Hydrocarbons,” International Journal of Phytoremediation, 15 (9). 844-860, 2013.
 
[272]  Gaskin, S. E., and R. H. Bentham, “Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses,” Science of the Total Environment, 408 (17). 3683-3688, 2010.
 
[273]  Meng, L., M. Qiao, and H. P. H. Arp, “Phytoremediation efficiency of a PAH-contaminated industrial soil using ryegrass, white clover, and celery as mono- and mixed cultures,” Journal of Soils and Sediments, 11 (3). 482-490, 2011.
 
[274]  Shahzad, A., S. Siddiqui, and A. Bano, “Rhizoremediation of petroleum hydrocarbon, prospects and future,” RSC Advances, 6 (110). 108347-108361, 2016.
 
[275]  Wojtera-Kwiczor, J., W. Żukowska, W. Graj, A. Małecka, A. Piechalak, L. Ciszewska, Ł. Chrzanowski, P. Lisiecki, I. Komorowicz, D. Barałkiewicz, I. Voss, R. Scheibe, and B. Tomaszewska, “Rhizoremediation of Diesel-Contaminated Soil with Two Rapeseed Varieties and Petroleum degraders Reveals Different Responses of the Plant Defense Mechanisms,” International Journal of Phytoremediation, 16 (7-8). 770-789, 2014.
 
[276]  Slater, H., T. Gouin, and M. B. Leigh, “Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species,” Chemosphere, 84 (2). 199-206, 2011.
 
[277]  Mackova, M., P. Prouzova, P. Stursa, E. Ryslava, O. Uhlik, K. Beranova, J. Rezek, V. Kurzawova, K. Demnerova, and T. Macek, “Phyto/rhizoremediation studies using long-term PCB-contaminated soil,” Environmental Science and Pollution Research, 16 (7). 817-829, 2009.
 
[278]  Kuiper, I., E. L. Lagendijk, G. V. Bloemberg, and B. J. J. Lugtenberg, “Rhizoremediation: A beneficial plant-microbe interaction,” Molecular Plant-Microbe Interactions, 17 (1). 6-15, 2004.
 
[279]  Lugtenberg, B. J., L. Dekkers, and G. V. Bloemberg, “Molecular determinants of rhizosphere colonization by Pseudomonas,” Annual Review of Phytopathology, 39 461-490, 2001.
 
[280]  Lugtenberg, B. J. J., L. V. Kravchenko, and M. Simons, “Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization,” Environmental Microbiology, 1 (5). 439-446, 1999.
 
[281]  Semple, K. T., K. J. Doick, L. Y. Wick, and H. Harms, “Microbial interactions with organic contaminants in soil: Definitions, processes and measurement,” Environmental Pollution, 150 (1). 166-176, 2007.
 
[282]  Semple, K. T., B. J. Reid, and T. R. Fermor, “Impact of composting strategies on the treatment of soils contaminated with organic pollutants,” Environmental Pollution, 112 (2). 269-283, 2001.