International Journal of Dental Sciences and Research
ISSN (Print): 2333-1135 ISSN (Online): 2333-1259 Website: http://www.sciepub.com/journal/ijdsr Editor-in-chief: Marcos Roberto Tovani Palone
Open Access
Journal Browser
Go
International Journal of Dental Sciences and Research. 2018, 6(5), 110-117
DOI: 10.12691/ijdsr-6-5-1
Open AccessArticle

Antibiofilm of a Tooth Paste on Cariogenic Bacteria

Rafit Jasim Aladool1 and Ghada Younis Abdul-Rahman2,

1Department of Oral Surgery, College of Dentistry, Mosul University, Iraq

2Department of Dental Basic Sciences, College of Dentistry, Mosul University, Iraq

Pub. Date: July 26, 2018

Cite this paper:
Rafit Jasim Aladool and Ghada Younis Abdul-Rahman. Antibiofilm of a Tooth Paste on Cariogenic Bacteria. International Journal of Dental Sciences and Research. 2018; 6(5):110-117. doi: 10.12691/ijdsr-6-5-1

Abstract

Caries is an infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and drugs acting on biofilm to, due to their widespread presence and accessibility. The aim of the present in vitro study was to investigate the efficacy of specific fluoridated toothpaste on the biofilms formed by the test microorganisms (Streptococcus mutans, Facklamia homins and Streptococcus saliviurus). The colonizations of the three test bacteria on four surfaces (two natural; permenant and deciduous tooth surfaces and two artificial ;composite and amalgam filling surfaces) were observed with scanning electron microscopy (SEM).SEM detected the anti-biofilm effects on the same four surfaces medicated with a tooth paste. Results: The used tooth paste declined the formed biofilms on four surfaces efficiently. The natural tooth surfaces responded in same manner to the tooth paste while composite responded more efficiently than amlagam surfaces. Conclusions: Flourdated toothpaste (0.454%) effectively can remove formed biofilms of the three test bacteria on natural surfaces and composite filling surfaces. It removed formed biofilm on amalgam surfaces but not as from other three surfaces.

Keywords:
Toothpaste Flouride Biofilm Streptococcus mutans Facklamia homins Streptococcus saliviurus Scanning electron microscope permanent and deciduous tooth composite and amalgam filling

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 5

References:

[1]  Lamont, R.J. Oral Microbiology and Immunology; ASM Press: Washington, DC, USA, 2006.
 
[2]  Marit Øilo and Vidar Bakken. Biofilm and Dental Biomaterials, Materials 2015, 8, 2887-2900.
 
[3]  Beighton D: The complex oral microflora ofhigh-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 2005; 33: 248-255
 
[4]  R. J. Fitzgerald and P. H. Keyes, “Demonstration of the etiologic role of streptococci in experimental caries in the hamster,” The Journal of the American Dental Association, 1960, vol. 61, pp. 9-19.
 
[5]  Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS.Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010; 8: 471-80
 
[6]  Gamboa F, Estupinan M, Galindo A. Presence of Streptococcus mutans in saliva and its relationship with dental caries: Antimicrobial susceptibility of the isolates. Universitas Scientiarum. 2004; 9(2): 23-7.
 
[7]  Regos J, Hitz HR. Investigations on the mode of action of triclosan, a broad-spectrum antimicrobial agent. Zentbl. Bakteriol. Parasitenkd. Infektkrankh. Hyg. Abt. 1 Orig. Reihe A 1974; 226: 390-401.
 
[8]  Degiam Z.D., An in Vitro Antimicrobial activity of six commercial toothpastes, This-qar. Med. J. (TQMJ), 2010, 4(4), 127-133.
 
[9]  Marinho V, Higgins J, Logan S, Sheiham A. Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane Database of Systematic Reviews 2003; Issue 1.
 
[10]  Australian Government, National Health and Medical Research Council. A Systematic Review of the Efficacy and Safety of Fluoridation, 2007.
 
[11]  Maria Ange´ Lica Hubb DeMenezes Oliveria.Carolina Paestorres, Jaciaramiranda Gomes-Silva, Michelle Alexandra Chinelatti, Fernando Carlos Hueb De Menezes, Regina Gueika Palma-Dibb and Maria Cristina Borsaatto,Microstructure and Mineral Composition of Dental Enamel of Permanent and Deciduous Teeth microscopy research and technique 2010, 73:572-577.
 
[12]  Gavin, P. J., J. R. Warren, A. A. Obias, S. M. Collins, and L. R. Peterson. 2002. Evaluation of the Vitek 2 system for rapid identification of clinical isolates of gram-negative bacilli and members of the family streptococcaceae. Eur. J. Clin. Microbiol. Infect. Dis. 21: 869-874.
 
[13]  Hope CK, Burnside G, Chan SN, Giles LH, Jarad FD. Validation of an extracted tooth model of endodontic irrigation. J Microbiol Methods 2011; 84: 131-3.
 
[14]  Abd El-Bakey R.M. Application of Scan Electron Microscope for the Morphological Study Of Biofilm in Medical Devices, Microbiology Department ,Faculty of Pharmacy, Minia University, Egypt; 201230: 591-616.
 
[15]  Clinical and laboratory standards institutes. Performance standard for antimicrobial susceptibility testing,Seventeenth informational supp. 2007, M100-S17, PA).
 
[16]  Addy M. Chemical plaque control. In: Kieser BJ, editor. Periodontics: a practical approach. London: Wright Publishing Company; 1990. pp. 527-34.
 
[17]  Menendez A, Li F, Michalek SM, Kirk K, Makhija SK, Childers NK. Comparative analysis of the antibacterial effects of combined mouthrinses on Streptococcus mutans. Oral Microbiol Immunol. 2005; 20(1): 31-4.
 
[18]  Sanz M. Serrano J. Iniesta M. Santa Cruz I. Herrera D. Antiplaque and Antigingivitis Toothpastes Karger, 2013, vol 23, pp 27-44.
 
[19]  Buzalaf MA, Pessan JP, Honório HM, ten Cate JM. Mechanisms of action of fluoride for caries control. Monogr Oral Sci 2011; 22: 97-114.
 
[20]  Bradshaw DJ, Marsh PD, Hodgson RJ, Visser JM. Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms.2002 Caries research 36: 81-86.
 
[21]  P.S. Watson, H.A. Pontefract, D.A. Devine1, R.C. Shore, B.R. Nattress, J. Kirkhamand C. Robinson. Penetration of Fluoride into Natural Plaque Biofilms J Dent Res 2005, 84(5): 451-455.
 
[22]  Bath-Balogh M, Fehrenbach MJ, Thomas P, Cmi. Illustrated Dental Embryology, Histology, And Anatomy. Saunders. 1997; 23(2): 44.
 
[23]  Scheid RC, Woelfel JB. Woelfel's dental anatomy: its relevance to dentistry. Wolters Kluwer/Lippincott Williams & Wilkins. 2007.
 
[24]  De Menezes Oliveira MA, Torres CP, Gomes-Silva JM, Chinelatti MA, De Menezes FC, Palma-DibbRG, et al. Microstructure and mineral composition of dental enamel of permanent and deciduous teeth. Microscopy research and technique. 2010; 73(5): 572-7.
 
[25]  J. Olossn and B. Krasse. Method for studying adherence of oral streptococci to solid surfaces, European Journal of Oral Sciences1976, Vol 84, issue 2p. 20-28.
 
[26]  Rokiewicz D, Daniluk T , Zaremba ML, Cylwik-Rokicka D, Łuczaj-Cepowicz E, Milewska R, Marczuk-Kolada G, Stokowska W Bacterial composition in the supragingival plaques of children with and without dental caries. Advances in Medical Sciences. 2006. Vol. 51. Suppl. 1.
 
[27]  M. N. Bellon-Fontaine, N. Mozes, H. C. van der Mei, J. Sjollema, O. Cerf, P. G. Rouxhet and H. J. Busscher, “A Comparison of Thermodynamic Approaches to Predict the Adhesion of Dairy Microorganisms to Solid Sub-strata,” Cell Biophysics, Vol. 17, No. 1, 1990, pp. 93-106.
 
[28]  H. J. Busscher, M. M. Cowan and H. C. van der Mei, “On the Relative Importance of Specific and Non-Specific Approaches to Oral Microbial Adhesion,” FEMS Micro-biology Reviews, Vol. 8, No. 3-4, 1992, pp. 199-209.
 
[29]  Y. H. An and R. J. Friedman, “Concise review of mechanisms of bacterial adhesion to biomaterial surfaces,” Journal of Biomedical Materials Research, vol. 43, no. 3, pp. 338-348, 1998.
 
[30]  B. Nyvad and O. Fejerskov, “Scanning electron microscopy of early microbial colonization of human enamel and root surfaces in vivo,” Scandinavian Journal of Dental Research, vol. 95, no. 4,pp. 287-296, 1987.
 
[31]  J. Einwag, A.Ulrich and F. Gehring, “In-Vitro Plaque Accumulation on Different Filling Materials,” Oralprophylaxe, Vol. 12, No. 1, 1990, pp. 22-25.
 
[32]  L. Mei, H. J. Busscher, H. C. van der Mei and Y. Ren, “Influence of Surface Roughness on Streptococcal Adhe-sion Forces to Composite Resins,” Dental Materials, Vol. 27, No. 8, 2011, pp. 770-778.
 
[33]  M. Yamauchi, K. Yamamoto, M. Wakabayashi and J. Kawano, “In Vitro Adherence of Microorganisms to Den-ture Base Resin with Different Surface Texture,” Dental Materials Journal, Vol. 9, No. 1, 1990, pp. 19-24.
 
[34]  R. D. Fields and M. V. Lancaster, “Dual-attribute continuous monitoring of cell proliferation/cytotoxicity,” American Biotechnology Laboratory, vol. 11, no. 4, pp. 48-50, 1993.
 
[35]  Schierholz, J.M and Beuth, J.. Implant infections: a haven of opportunistic bacteria. J. Hosp. Infect., 2001 49: 87-93.
 
[36]  John L.Pace,Mark E.Rupp and Roger G. Finch. (2005). Biofilm, Infection and Antimicrobial Therapy, Taylor and Franks Group; 43-45.
 
[37]  Bonner, M.C.; Tunney, M.M.; Jones, D.S. and Gorman, S.P. Factors affecting in-vitro adherence of ureteral stent biofilm isolates to polyurethane. Int. J. Pharmaceutics. 1997, 151: 201-207.
 
[38]  Jansen, B.; Peters, G. and Pulverer, G.. Mechanisms and clinical relevance of bacterial adhesion to polymers. J. Biomatr. Appl.1988, 2: 520-543.
 
[39]  A. T. Poortinga, R. Bos and H. J. Busscher, “Measure-ment of Charge Transfer during Bacterial Adhesion to an Indium Tin Oxide Surface in a Parallel Plate Flow Cham-ber,” Journal of Microbiological Methods, Vol. 38, No. 3, 1999.
 
[40]  L. Mei, H. C. Van der Mei, Y. Ren, W. Norde and H. J. Busscher, “Poisson Analysis of Streptococcal Bond Strengthening on Stainless Steel with and without a Sali-vary Conditioning Film,” Langmuir, Vol. 25, No. 11, 2009, pp. 6227-6231.
 
[41]  A. Leonhardtt, J. Olsson2, and G. Dahlen. Bacterial Colonization on Titanium, Hydroxyapatite, and Amalgam Surfaces in vivoJ Dent Res 1995, 74(9): 1607-1612.
 
[42]  Glassman MD, Miller IJ. Antibacterial properties of one conventional and three high-copper dental amalgams. J Prosthet Dent 1984, 52: 199-20350-51
 
[43]  D. Ready, J. Pratten, N. Mordan, E. Watts and M. Wilson, “The Effect of Amalgam Exposure on Mercury- and An-tibiotic-Resistant Bacteria,” International Journal of An-timicrobial Agents, Vol. 30, No. 1, 2007, pp. 34-39.
 
[44]  Bernardo, M; Martin, MD; Lerouz, BG. “Survival and reasons for failure of amalgam versus resin-based composites posterior restorations placed in a randomized clinical trial”. The Journal of the American Dental Association. 2007, 138: 775-78.
 
[45]  C. Hansel, G. Leyhausen, U. E. Mai and W. Geurtsen, “Effects of Various Resin Composite (Co)monomers and Extracts on Two Caries-Associated Micro-Organisms in Vitro,” Journal of Dental Research, Vol. 77, No. 1, 1998, pp. 60-76.