International Journal of Dental Sciences and Research
ISSN (Print): 2333-1135 ISSN (Online): 2333-1259 Website: http://www.sciepub.com/journal/ijdsr Editor-in-chief: Marcos Roberto Tovani Palone
Open Access
Journal Browser
Go
International Journal of Dental Sciences and Research. 2017, 5(3), 69-77
DOI: 10.12691/ijdsr-5-3-4
Open AccessArticle

Effect of Diameter and Length and the Influence of Position of Dental Implant on the Distribution of Occlusal Stress on the Success Rate of Dental Implant

Liqaa Shallal Farhan1,

1Maxillofacial Surgery, College of Dentistry of Al-anbar University

Pub. Date: September 11, 2017

Cite this paper:
Liqaa Shallal Farhan. Effect of Diameter and Length and the Influence of Position of Dental Implant on the Distribution of Occlusal Stress on the Success Rate of Dental Implant. International Journal of Dental Sciences and Research. 2017; 5(3):69-77. doi: 10.12691/ijdsr-5-3-4

Abstract

Replacing missing teeth by dental implant is one option used nowadays. It is important to estimate the success rate of this treatment and to consider main variable that influence the success rate of this treatment. Among these factors to be considered is Length and diameter of dental implant supplied by many manufacturer company. The position of dental implant in oral cavity and the nature and magnitude of the applied force during mastication and parafunctional habits are other factors to be consider during treatment. Objectives: The influence of diameter, length and position of dental implant on success rate of dental implant treatment. Materials and Method: Prospective study involve (697) patients. Age (18-77y) and involve male (387), female (310). The study was done in department of dental implantology in Al-Ramadi health center. The study was done between (2013-2017). The criteria used for assessment patient prior to implant surgery as follow: The patients with no systemic disease, good glycemic control, good oral hygiene, no periodontitis, abstain tobacco 2 weeks before surgery. 820 easy implant® by franch dental implants manufacturer with sandblast surface, cylindrical-conical with internal hexagon and morse taper connection are used to replace teeth. A variety of dental implant length and diameter is used as follow: Upper Central incisor 5×11.5, upper lateral incisors 5×8.5, upper canine 5×8.5, upper 1st premolar 4.3×11, upper 2nd premolar 4.3-8, upper molars 5×7.Lower central incisors 3.5×10, Lower lateral incisor 3.5×10.5, lower canine 3.5×11.5, lower 1st premolar 3.5×8, lower 2nd premolar 3.4×8, lower molars 4.5×7. The patients were followed during the study period clinically and radiographically. The success rate is recorded and compared. Results: The statistical analysis of the study in Table 2 & Figure 2, Figure 3 indicate that the higher survival rate was (75.0000 +/- 5.0000) in the AMX 3 area. The lower survival rate was (55.3333 +/- 5.05757) in PM 3 because of short and nonstandardized diameter of dental implant. There is significant difference in mean of survival rate at 0.05 level. Conclusion: The diameter, length and position of dental implant are among these factors that should be considered when we estimate the success rate of dental implant treatment.

Keywords:
dental implant diameter length position occlusal stress

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Tao LI, Yuxiang Ding, Liang Kong. Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality. Implant J. 2011; 3(5): 76-89.
 
[2]  Y. Ysuboi, E. Wada, H. Suwa, T. lizuka. Effect of thick cortical bone and implant length on dental implant stability. Bone. 2005; 3(4): 45-56.
 
[3]  M. Dincel, E. Tezulas. Required primary stability and torque for immediate loading of mini dental implants. Oral Surg. Oral Med. Oral Patho.Oral Radiol. Endodont. 2008; 3(4): 37-46.
 
[4]  K. Horiuchi, H. Uchida, K. Yamamota, M. Sugimura. Immediate loading of branemark system implants following placement in edentulous patients. Int. J. Oral Maxillofac. Implants. 2007. 12(2): 23-45.
 
[5]  H.L. Craddock. Occlusal changes following posterior tooth loss in adults. J. Prosthodont. 2008. 2(3): 34-56.
 
[6]  M. Chiapasco, S. Abati, E. Romeo, G. Vogel. Biologicl factors contributing of ossteointegrated oral implants. Eur. J. Oral Maxillofac. Implants. 2001. 12(3): 45-67.
 
[7]  Eitan Mijiritsky, Adi Lorean, Liran Levin. Implant diameter and length influence on survival. Implant dentisty.2013; 5(3): 56-67.
 
[8]  Das Neves FD, Fones D, Bernardes SR et al. Short implants –An analysis of longitudinal studies. Int J Oral Maxillofac Implants. 2006; 21(5): 56-78.
 
[9]  Hagi D, Deporter DA, Pillar RM et al. A targeted review of study outcomes with short (×7mm) endosseous dental implants in partially edentulous patients. J Periodontol. 2004; 2(4): 32-45.
 
[10]  Renouard F, Nisand. Impact of length and diameter on survival rates. Clin Oral Implant Res. 2006; 23(4): 34-67.
 
[11]  Telleman G, Raghoebar GM, Vissink A, et al. A systematic review of the prognosis of short (<10mm)dental implant placed in the partially edentoulous patients. J Clin Periodontol. 2011; 2(4); 67-89.
 
[12]  Lee JH, Frias V, Lee KW, et al. Effect of implant size and shape on implant success rates. J Prosthet Dent. 2005; 34(4): 34-67.
 
[13]  Esposito M, Grusovin MG, Rees J, et al. Interventions for replacing missing teeth. Cochrane database Syst Rev. 2010; 3(4): 34-56.
 
[14]  Kambiz Ghaemi, Reza Telchi. Optimal selection of dental implant according to length and diameter. Int J Bioscie Biochemistry. 2014; 12(3): 34-89.
 
[15]  J.C. Yuan, C. Sukotjo. Occlusion for implant-supported fixed dental prostheses in partially edentulous patients. J Periodontal implant.2013; 12(2): 34-56.
 
[16]  T. Alberktsson, N. Donos. Implant survival and complications. Clin Oral Implants Res. 2012; 1(3): 34-56.
 
[17]  Himmlova L, Dostalova T, Kacovsky A, et al. Influce of implant length and dihameter on stress distribution. J Prosthet Dent. 2004; 3(11): 45-78.
 
[18]  Traek A. Soliman, Raafa A. Tamam, Salah A. Assessment of stress distribution around implant fixture. Advanced dental research. 2015; 10(3): 34-67.
 
[19]  M.G. Herehkar, V.N. Patil, S.S. Patil, S.S. mulani, M. Sethi. The influence of thread geometry on biomechanical load transfer to bone. Dent Res J Isfahan. 2014; 23(3): 45-78.
 
[20]  S. Calderon Pdos, E.M. Kogawa, J.R. Luaris. P.C. Conti. The influence of gender and bruxism on human bite. J Appl Oral Sci. 2006; 3(4): 67-78.
 
[21]  K.C. Leung, T.W. Chow, P.Y. Wat, M.B. Comfort. Peri-implant bone loss. In J Oral Maxillofac Implants. 2001; 14(3): 23-45.
 
[22]  A.M. Rodriguez, I.H. Orenstein, H.F. Morris. Survival of various implant-supported proesthesis designs. Ann Periodontol. 2000; 23(3): 45-67.
 
[23]  R.M. Falcon-Antenucci, E.P. Pellizzer, M.C. Goiato, P.Y. Noritomi. Influence of cusp inclination on stress distribution in implant-supported proestheses. J Proesthodont. 2010; 3(4): 67-89.
 
[24]  M.Menini, E. Conserva, T. Tealdo, F.Pera, G. Ravera. The use of a masticatory robot to analyze the shock absorption of different restorative materials for implant proesthesis. J Biol Res. 2011; 21(3): 45-78.
 
[25]  Adriane Yaeko Togashi, Silmara Assunta Castaman. Marginal bone loss around Morse Taper Connection Implants in ossteointegration period. Dent Implant. 2016; 10(5): 56-89.
 
[26]  Renouard F, Nisand D. Impact of length and diameter on survival rates. Clin Oral Implants Res. 2006; 13(6): 23-78.
 
[27]  Topkaya T, Solmaz MY, Dundar S. Numerical analysis of the effect of implant geometry on the stress distribution. Cumheriyet Dent J. 2015; 9(4): 45-77.
 
[28]  Serkan Dundar, Tolga Topkaya, Ferhan Yaman, Arif Saybak. Finite element analysis of the stress distributions in the peri-implant bone. J Biotech and Biotec Equip. 2016; 10(2): 55-78.
 
[29]  M Cicciu, E Bramanti, F Cecchetti, G Risitano. FEA and Von Mises stress analyses of different dental implant to distribute masticatory stress. Oral Implant. 2014; 11(5): 65-78.
 
[30]  Alkan I, Sertogz A, Eici B. Influence of occlusal stress distribution in preloaded dental implant screws. J Prosthetic Dent. 2004; 11(3): 77-90.
 
[31]  O. Dilek, E. Tezulas, and M. Dincel. Required minimal primary stability and torque values for immediate loading of mini dental implants. Oral Surg. Oral Med. 2008; 11(3): 34-68.
 
[32]  Carl E, Misch BS, Jon B. Suzuki DDS, Martha W. Bidez. Apositive correlation between occlusal trauma and peri-implant bone loss. Implant Dentsitry.2005; 11(4): 65-89.
 
[33]  J.P. Geng, B.C.T. Keson, and G.R. Liu. Application of finite element analysis in implant dentistry. Implant Dentsitry. 2001; 10(2): 23-56.
 
[34]  L. Kong, et al. Bivariate evaluation of cylinder implant diameter and length. J Prosthodontic. 2008; 6(3): 44-78.
 
[35]  Sergio Olate, Mariana Camilo, Renato Mazzonetto. Influence of diameter and length of implant on early dental implant failure. Oral Maxillofacial Surgery. 2010; 12(4): 34-89.
 
[36]  Degidi M, Piattelli A, Carinci F. Clinical outcome of narrow diameter implants.J Periodontol. 2008; 10: 56-78.
 
[37]  G. Siamos, S. Winkler and K.G. Boberick. Relationship between implant preload and screw loosening on bone –implant prosthesis. Oral Implantol. 2002; 11(4): 34-55.
 
[38]  Anner R, Better H, Chaushu G. The clinical effectiveness of 6 mm diameter implants' Periodontol. 2005; 13(4): 34-67.
 
[39]  Eckert SE, Meraw SJ, Weaver AL. Early experience with wide –platform MK II implant.J Oral Maxillofacial Implants. 2001; 6(3): 34-89.
 
[40]  Vigolo P, Givant A. Clinical evaluation of single tooth mini implant restorations. J Prosthetic D.2000; 11(2): 23-56.