[1] | Mount GJ, Ngo H. Minimal intervention: a new concept for operative dentistry. Quintessence Int Sept 2000; 31(8): 527-33. |
|
[2] | Peters MC, McLean ME. Minimally invasive operative care. II. Contemporary techniques and materials: an overview. J Adhes Dent Spring 2001; 3(1): 17-31. |
|
[3] | Herrera M, Castillo A, Baca P, Carrión P. Antibacterial activity of glass-ionomer restorative cements exposed to cavity producing microorganisms. Oper Dent 1999; 24: 286-91. |
|
[4] | Moshaverinia A, Chee WW, Brantley WA et al. Surface properties and bond strength measurements of N-vinylcaprolactam (NVC) containing glass-ionomer cements. J Prosthet Dent Mar 2011; 105(3):185-93. |
|
[5] | Ten Cate JM, Van Duinen RN. Hypermineralization of dentinal lesions adjacent to glass-ionomer cement restorations. J Dent Res Jun 1995; 74(6):1266-71. |
|
[6] | Wang Z, Shen Y, Haapasalo M. Dental materials with antibiofilm properties. Dent Mater 2013; 30: e1-e16. |
|
[7] | Sanders BJ, Gregory RL, Moore K et al. Antibacterial and physical properties of resin modified glass-ionomers combined with chlorhexidine. J Oral Rehabil 2002; 29: 553-558. |
|
[8] | Palmer G, Jones FH, Billington RW et al. Chlorhexidine release from an experimental glass ionomer cement. Biomaterials 2004; 25:5423-5431. |
|
[9] | Turkun LS, Turkun M, Ertugrul F et al. Long-term antibacterial effects and physical properties of a chlorhexidine-containing glass ionomer cement. J Esthet Restor Dent 2008; 20:29-44. |
|
[10] | Korkmaz FM, Tuzuner T, Baygin O et al. Antibacterial activity, surface roughness, flexural strength, and solubility of conventional luting cements containing chlorhexidine diacetate/ cetrimide mixtures. J Prosthet Dent 2013; 110:107-115. |
|
[11] | Barbour ME, Maddocks SE, Wood NJ et al. Synthesis, characterization, and efficacy of antimicrobial chlorhexidine hexametaphosphate nanoparticles for applications in biomedical materials and consumer products. Int J Nanomedicine 2013; 8: 3507-3519. |
|
[12] | Yesilyurt C, Er K, Tasdemir T et al. Antibacterial activity and physical properties of glass-ionomer cements containing antibiotics. Oper Dent Jan-Feb 2009; 34(1): 18-23. |
|
[13] | Choi K, Oshida Y, Platt JA et al. Microtensile bond strength of glass ionomer cements to artificially created carious dentin. Oper Dent Sept-Oct 2006; 31(5): 590-7. |
|
[14] | Garcia FCP, Terada RSS, Carvalho RM. Testes mecânicos para a avaliação laboratorial da união resina dentina. Rev Fac Odontol Bauru 2002; 10(3): 118-27. |
|
[15] | Botelho MG. Inhibitory effects on selected oral bacteria of antibacterial agents incorporated in a glass ionomer cement. Caries Res Mar-Apr 2003; 37(2):108-14. |
|
[16] | Pilly v et al. Protection of tooth structure by chlorhexidine and natural polyphenols: a review. Braz Dent Sci 2012; 15(4):3-9. |
|
[17] | N. Senior. Some observations on the formulation and properties of chlorhexidine. J.Soc.Cosmet.Chem 1973; 4: 259-278. |
|
[18] | Hook et al. Development of a novel antimicrobial-releasing glass ionomer cement functionalized with chlorhexidine hexametaphosphate nanoparticles. Journal of Nanobiotechnology 2014; 12: 3. |
|
[19] | Peter C. Moon. Review of Matrix Metalloproteinases’ Effect on the Hybrid Dentin Bond Layer Stability and Chlorhexidine Clinical Use to Prevent Bond Failure. The Open Dentistry Journal 2010; 4:147-152. |
|