International Journal of Dental Sciences and Research
ISSN (Print): 2333-1135 ISSN (Online): 2333-1259 Website: http://www.sciepub.com/journal/ijdsr Editor-in-chief: Marcos Roberto Tovani Palone
Open Access
Journal Browser
Go
International Journal of Dental Sciences and Research. 2020, 8(5), 127-132
DOI: 10.12691/ijdsr-8-5-3
Open AccessArticle

Radiographic Evaluation of the Adaptation of Prosthetic Components on Different Dental Implant Prosthetic Interfaces: Cone Morse, Internal Hexagon and External Hexagon

Cynthia Vanessa Müller Martinhão1, Renan Lana Devita2, Igor da Silva Brum3, , Andrea Gross4, Jorge José de Carvalho5 and Jairo Marcos Gross6

1Department of Radiology, Faculty of Dentistry of the São Leopoldo Mandic University, Curitiba, Brazil

2Department of Orthodontics, Faculty of Dentistry of the University of Barcelona, Barcelona, Spain

3Department of Implantology, Faculty of Dentistry of the State University of Rio de Janeiro, Rio de Janeiro, Brazil

4Department of Maxillofacial Imaginology, Faculty of Dentistry of the São Leopoldo Mandic University, Curitiba, Brazil

5Department of Biology, Faculty of Medicine of the State University of Rio de Janeiro, Rio de Janeiro, Brazil

6Department of Orthodontics, Faculty of Dentistry of the São Leopoldo Mandic University, Curitiba, Brazil

Pub. Date: July 09, 2020

Cite this paper:
Cynthia Vanessa Müller Martinhão, Renan Lana Devita, Igor da Silva Brum, Andrea Gross, Jorge José de Carvalho and Jairo Marcos Gross. Radiographic Evaluation of the Adaptation of Prosthetic Components on Different Dental Implant Prosthetic Interfaces: Cone Morse, Internal Hexagon and External Hexagon. International Journal of Dental Sciences and Research. 2020; 8(5):127-132. doi: 10.12691/ijdsr-8-5-3

Abstract

Introduction: Currently, the reliability of the dental implant system is not only reflected in its osseointegration success rate. The adaptation of prosthetic components is essential to accomplish the prosthetic rehabilitation. In the long run, a maladapted prosthetic component can lead to failure of the dental implant-prosthesis structure, as an example the creation of an ideal condition for the development of perimplantitis. The objective of this work was to demonstrate, by means of radiographic images, a comparison between the images of the interface between the dental implant and the prosthetic component, with one adapted and the other maladapted. Materials and Methods: For this purpose, interproximal incidence radiographs of the screwed prosthetic components on the dental implants were performed with simulation of maladaptation by interposing a 50 μm polyester matrix and without maladaptation. Three types of dental implant prosthetic interfaces were used: cone morse, internal hexagon and external hexagon. The prosthetic components used were three mini abutments, three CoCr UCLAS and three solid abutments. The dental implants with the screwed prosthetic components were positioned and stabilized with utility wax on the dummy and later radiographed with a phosphor plate system. Eighteen radiographs were taken, nine representing adapted joints and nine maladapted. Results: Results showed that in the radiographs of the cone morse dental implants there were no differences between the images, whereas in the internal hexagon and external hexagon dental implants, in the maladapted images there were identified a radiolucent line between the dental implant and the prosthetic component. Conclusion: In conclusion, It was possible to demonstrate the differences between the images of the adapted and maladapted prosthetic components to the external hexagon and internal hexagon dental implants.

Keywords:
prosthetic component radiography dental implants prosthesis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Pereira JR. Prótese sobre implante. 1ª Ed. São Paulo: Ed. Artes Médicas, 2012, p. 26-71.
 
[2]  Morrin HF, Ochi S, Crum P, Orenstein IH, Winkler S AICRG, Part I: A 6-Year Multicentered, Multidisciplinary Clinical Study of a New and Innovative Implant Design, Journal of Oral Implantology. 2004; 30(3):125-133.
 
[3]  Bharate V, Kumar Y, Koli D, Pruthi G, Jain V. Effect of different abutment materials (zirconia or titanium) on the crestal bone height in 1 year.J Oral Biol Craniofac Res. 2020; 10 (1): 372-374.
 
[4]  Hung HC, Huang CS, Pan YH. The compressive strength of implant-abutment complex with different connection designs. J Dent Sci. 2019; 14 (3): 318-324.
 
[5]  Roberts MW, Mol A. Clinical techniques to reduce sensor plate damage in PSP digital radiography. J Dent Child (Chic). 2004; 71:169-170.
 
[6]  Guimarães MP, Nishioka RS, Bottino, MA. Analysis of implant/abutment marginal fitting. Pós-Grad Rev Fac Odontol Sao José dos Campos, São José dos Campos, v.4, n.2, p.12-19, maio/ago.2001.
 
[7]  Ghinassi, B.; D'Addazio, G .; Di Baldassarre, A.; Femminella, B.; Di Vincenzo, G.; Piattelli, M.; Gaggi, G.; Sinjari, B. Immunohistochemical Results of Soft Tissues Around a New Implant Healing-Abutment Surface: A Human Study. J. Clin. Med. 2020, 9, 1009.
 
[8]  Nothdurft F. All-ceramic zirconium dioxide implant abutments for single-tooth replacement in the posterior region: a 5-year outcome report. Int J Prosthodont (IJP) 2019; 32 (2): 177-181.
 
[9]  Todescan S, Lavigne S, Kelekis-Cholakis A. Guidance for the maintenance care of dental implantes: clinical review. J Can Dent Assoc. 2012; 78(1): 107.
 
[10]  Cameron SM, Joyce A, Brousseau JS, Parker MH. Radiographic verification of implant abutment seating, J Prosthet Dent. 1998 Mar; 79 (3): 298-303.
 
[11]  Sinjari B, D'Addazio G, Santilli M, et al. A 4 Year Human, Randomized, Radiographic Study of Scalloped versus Non-Scalloped Cemented Implants.Materials (Basel). 2020; 13 (9): 2190. Published 2020 May 10.
 
[12]  Freitas A, Varoli OJ, Torres FA. Técnicas radiograficas intrabucais. In: Freitas A., Rosa JE, Souza IF. Radiologia Odontológica. 5. ed. São Paulo: Artes Médicas; 2000. p. 105.
 
[13]  Joda T, Zarone F, Ferrari M. The complete digital workflow in fixed prosthodontics: a systematic review.BMC Oral Health. 2017; 17 (1): 124. Published 2017 Sep 19.
 
[14]  Haiter Neto F. et al. Estágio atual da radiografia digital. Revista da ABRO, Brasília, v. 1, n. 3, p. 01-06, set./dez. 2000.
 
[15]  Lin KC, Wadhwani CP, Cheng J, Sharma A, Finzen F. Assessing fit at the implant-abutment junction with a radiographic device that does not require access to the implant body. J Prosthet Dent. 2014.
 
[16]  Duarte GV. Avaliação do exame radiográfico convencional e digitalno diagnóstico da adaptação entre implantes dentários e pilares protéticos. Dissertação de mestrado de Odontologia, faculdade Federal da Bahia, Salvador 2007.
 
[17]  Konermann AC, Zoellner A, Chang BM, Wright RF. In vitro study of thecorrelation between the simulated clinical and radiographic examination of microgaps at the implant-abutment interface. Quintessence Int. 2010 Sep; 41(8): 681-7.
 
[18]  Darós P, Carneiro VC, Siqueira AP, de-Azevedo-Vaz SL. Diagnostic accuracy of 4 intraoral radiographic techniques for misfit detection at the implant abutment joint. J Prosthet Dent. 2018; 120 (1): 57-64.
 
[19]  Misch, C. Prótese sobre implante. 1ª Ed São Paulo: Ed. Santos, 2006. 625p.
 
[20]  Costa CRR. As diferentes características de sistemas e modelos de implantes dentários: uma revisão de literatura. Semana Acadêmica: Revista Científica. ISSN 2236-6717. Fortaleza, Vol. 01, Nº. 108, 2017.
 
[21]  Varise CG, Abi-Rached FO, Messias AM, Das Nesves FD, Segala JCM, Reis JMSN. Sistema Cone Morse e utilização de pilares com plataforma switching. Rev. Bras. Odontol.[online]. 2015, vol.72, n.1-2, pp. 56-61.
 
[22]  Albrektsson T, Wennerberg A. On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res. 2019; 21 Suppl 1: 4-7.
 
[23]  Oh T, Yoon J, Misch C, Wang H. The causes of early implant bone loss: myth or Science. Journal Periodontology, v.73; n.3; p.322-33, Mar, 2002).
 
[24]  Baj A, Bolzoni A, Russillo A, et al. Cone-morse implant connection system significantly reduces bacterial leakage between implant and abutment: an in vitro study. J Biol Regul Homeost Agents. 2017; 31(2 Suppl 1): 203-208.
 
[25]  Byrne D, Houston F, Cleary R, Claffey N. The fit of cast and premachined implant abutments. J Prosthet Dent. v. 80, n. 2, p. 184-92, Aug, 1998.
 
[26]  Hung HC, Huang CS, Pan YH. The compressive strength of implant-abutment complex with different connection designs. J Dent Sci. 2019; 14 (3): 318-324.
 
[27]  Bergamim M, Sendyk CL, Sendyk WR, Nishida Y. Análise comparativa do grau de liberdade rotacional e da integridade física das conexões protéticas de diferentes implantes com hexágono interno. Revista Implantinews 2009.
 
[28]  Sinjari, B.; D'Addazio, G.; Traini, T.; Varvara, G.; Scarano, A.; Murmura, G.; Caputi, S. A 10-year retrospective comparative human study on screw-retained versus cemented dental implant abutments. J. Boil. Regul. Homeost. Agents 2019, 33, 787-797.
 
[29]  Konermann AC, Zoellner A, Chang BM, Wright RF. In vitro study of thecorrelation between the simulated clinical and radiographic examination of microgaps at the implant-abutment interface. Quintessence Int. 2010 Sep; 41(8): 681-7.
 
[30]  Parks ET, Williamson GF. Digital Radiography: An Overview. The Journal of Contemporary Dental Practice, Vol. 03, N. 04, November 15, 2002.
 
[31]  Versteeg K, Sanderubk G, Stelt P. Efficacy of digital intra oral radiography in clinical dentistry. J Dent. V.25, n.3-4, p.215-224, 1997.
 
[32]  Saravi BE, Putz M, Patzelt S, Alkalak A, Uelkuemen S, Boeker M. Marginal bone loss around oral implants supporting fixed versus removable prostheses: a systematic review.Int J Implant Dent. 2020; 6 (1): 20. Published 2020 Jun 3.