International Journal of Dental Sciences and Research
ISSN (Print): 2333-1135 ISSN (Online): 2333-1259 Website: Editor-in-chief: Marcos Roberto Tovani Palone
Open Access
Journal Browser
International Journal of Dental Sciences and Research. 2013, 1(3), 56-59
DOI: 10.12691/ijdsr-1-3-4
Open AccessArticle

Scanning Microradiography: Measurement of X-ray Attenuation Coefficient of Fissure Sealants Containing Tin Methacryloxytri-n-butyltin (SnM) as Radio-opaquer

Aftab Ahmed Khan1, , Asaad Javaid Mirza2, Adel Zia Siddiqui3 and Maaz Asaad4

1Assistant Professor Dental Materials Sciences, Muhammad Bin Qasim Dental College, Karachi, Pakistan

2Professsor Operative Dentistry, Al-Majmaah University, Majmaah, Saudi Arabia

3Assistant Professor Dental Materials Sciences, Baqai Dental College, Karachi, Pakistan

4Postgraduate Student

Pub. Date: December 10, 2013

Cite this paper:
Aftab Ahmed Khan, Asaad Javaid Mirza, Adel Zia Siddiqui and Maaz Asaad. Scanning Microradiography: Measurement of X-ray Attenuation Coefficient of Fissure Sealants Containing Tin Methacryloxytri-n-butyltin (SnM) as Radio-opaquer. International Journal of Dental Sciences and Research. 2013; 1(3):56-59. doi: 10.12691/ijdsr-1-3-4


Objective: Radio-opacity is a fundamental requirement for fissure sealants in order to be clearly visible radiographicallyand may be well differentiated from caries. Many attempts have been made to make resin based fissure sealants radio-opaque. Researchers achieved radio-opacity of the sealants by blending heavy metals as fillers into the polymeric matrix. Keeping the demerits of using heavy metals in view, a novel fissure sealant was developed by chemically incorporating Tin (Sn) in monomer of methacrylate. This study has been done to assess under scanning micro-radiography (SMR), the radiopacity of the indigenously prepared fissure sealants containing increasing amount of SnM until the consistency of the mix remains workable and clinically useful. Design: Experimental study. Place of study: Biophysical Lab Queen Mary University of London, United Kingdom. Methodology: An organo-tin compound – Methacryloxytri-n-butyltin (SnM) and Ethylene Glycol Dimethacrylate (EGDMA) in varying quantities were mixed to prepare fissure sealant indigenously. Camphorquinone (CQ) and N, N-Dimethyl-P-Toluidine (DMPT) were added to above mixture. The prepared sealants were polymerized in cuvettes and mounted on Scanning microradiography machine. The machine was run for 100 seconds repeatedly for 60 runs. Obtained results were processed and calculated in Microsoft Excel software. Results: It was observed that increasing the weight of Tin (Sn) content in a sealant increases the radio-opacity of the sealant but SnM more than 9.5 gm renders the material unworkable. Conclusion: This study will not only help in enhancing the radio-opacity of fissure sealants but also the radio-opacity of other clinical composite materials maybe enhanced by this method.

linear attenuation coefficient tin methacrylate radio-opacity of fissure sealant

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 4


[1]  Akar A, Baltas H, Cevik U, Korkmaz F, Okumus-og˘luNT. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662 keV γ-ray energies. Journal of Quantitative Spectroscopy and Radiative Transfer; 102 (2): 203-11. 2006.
[2]  Hubbell JM. Seltzer SM. Tables of X-ray mass attenuation coefficient and mass energy absorption coefficient from 1 KeV to 20 MeV for elements 2=1 to 92 and 48 additional substance of dosimetric interest. US Dept of Commerce, NIST, USA, NISTIR 5632: 1-112. 1995.
[3]  Ahmed Y. Laboratory studies of novel radiopaque fissure sealants [M.Clin.Dent. Thesis]. Queen Mary’s School of Medicine and Dentistry, University of London; 2005.
[4]  McCabe JF and Walls AWS. Applied dental materials, 9th edition. Singapore: Blackwell publishing; 2008: 227.
[5]  Ahovuo-Saloranta A, Hiiri A, Nordblad A, Worthington H, Mäkelä M. Pit and fissure sealants for preventing dental decay in the permanent teeth of children and adolescents. Cochrane Database Syst Rev (3): 2004 CD001830.
[6]  PardiV, Pereira, AC, Ambrosano, GM, MeneghimMde C. Clinical evaluation of three different materials used as pit and fissure sealant: 24-months results; J ClinPediatr Dent.; (29): 133-7. 2005.
[7]  Azarpazhooh A, Main PA. Pit and fissure sealants in the prevention of dental caries in children and adolescents: a systematic review; J Can Dent Assoc. 74 (2): 171-7. 2008.
[8]  Farsi NM. The effect of education upon dentists' knowledge and attitude toward fissure sealants; Odonto-StomatologieTropicale (22): 27-32. 1999.
[9]  William F. Vann, Jr, F. Thomas McIver [Internet]. PIT AND FISSURE SEALANTS: An overview of the issues related to diagnosis and treatment decisions Available from:
[10]  Rock, WP. Potts, AJC., Marchment, MD. The visibility of clear and opaque fissure sealants; Br Dent J (167): 395-96. 1989.
[11]  Sabbagh J, Vreven J, Leloup G. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora); Oper Dent. (29): 677-84. 2004.
[12]  Volker R, Norbert M, Ulrich S, inventors; Ivoclar AG, Assignee. X-ray opaque dental materials. United States patent 5780668. 1998 April.
[13]  Khan AA. The X-ray attenuation properties of a novel radiopaque fissure sealant using a tin methacrylate formulation [M.Sc. Thesis]. London: Queen Mary University of London; 2007.
[14]  Anderson P, Elliot JC, Dowker SEP, Bollett-Qiuvogne F. Scanning Microradiography- A digital 2-D X-ray imaging technique; G.I.T. Imaging and Microscopy (02): 22-24. 2003.
[15]  Elliott JC, Dowker SEP, Knight RD. Scanning X-ray microradiography of a section of a carious lesion in dental enamel; J. Microscopy (123): 89-92. 1981.
[16]  Nuray Attar, Laura E. Tam, Dorothy McComb. Strength, Stiffness and Radiopacity of Flowable Resin Composites; J Can Dent Assoc (69): 516-21. 2003.
[17]  Takuma Tsuge, Shoji K, Kazuya H, Hiroyasu K, Hideo M and Noriko H. Radiopacity of posterior restorative composites; Int Chin J Dent (8): 49-52. 2008.
[18]  Baca P, Bravo M, Baca AP, Jiménez A, González-Rodríguez MP. Retention of three fissure sealants and a dentin bonding system used as fissuresealant in caries prevention: 12-month follow-up results. Med Oral PatolOral Cir Bucal 12: E459-63. 2007.
[19]  Yao K, Kohara O, Shimoda Y, Konishi H and Hieda T. Study of pit and fissure sealant: The effect of viscosity of the sealant and type of the applicators on the administration time and the sealed area; Shoni Shikagaku Zasshi. (27):831-40. 1989.