International Journal of Celiac Disease
ISSN (Print): 2334-3427 ISSN (Online): 2334-3486 Website: Editor-in-chief: Samasca Gabriel
Open Access
Journal Browser
International Journal of Celiac Disease. 2017, 5(2), 72-76
DOI: 10.12691/ijcd-5-2-6
Open AccessArticle

Profiling of Nutritional and Health-Related Compounds in Developed Hexaploid Oat Lines Derivative of Interspecific Crosses

Rajae Manzali1, , Abderraouf El Antari2, Ahmed Douaik3, Mouna Taghouti4, Moncef Benchekroun1, Mohamed Bouksaim4 and Nezha Saidi5

1Departement of Biology, Health and Environnement, Hassan I University, Faculty of Sciences and Techniques, Settat, Morocco

2RU Food Technology, INRA, Marrakech, Morocco

3RU Environment and Conservation of Natural Resources, INRA, Rabat, Morocco

4RU Food Technology, INRA, Rabat, Morocco

5Research unit Plant Breeding, Conservation and Valorisation of Plant Genetic Resources, INRA, Rabat, Morocco

Pub. Date: June 02, 2017

Cite this paper:
Rajae Manzali, Abderraouf El Antari, Ahmed Douaik, Mouna Taghouti, Moncef Benchekroun, Mohamed Bouksaim and Nezha Saidi. Profiling of Nutritional and Health-Related Compounds in Developed Hexaploid Oat Lines Derivative of Interspecific Crosses. International Journal of Celiac Disease. 2017; 5(2):72-76. doi: 10.12691/ijcd-5-2-6


Physico-chemical, functional and antioxidant capacities of 26 oat (Avena sativa L.) lines and cultivars were investigated. The results showed that the contents were considerably variable within samples, starch concentration (44,83-63,79%), carbohydrate (42,08-62,65%), protein (9,67-17,44%), fat (3,06-10,96%), β-glucan (1,37-6,05%) and ash (1,22-5,38%). The analysis of fatty acids composition indicated that, palmitic acid, oleic acid, linoleic acid, stearic acid and linolenic were the major fatty acids in oat lipids, and that the contents of total UFA in assessed material varied between72, 29-80,11%. Moreover, the phenolic content varied from 23,1 to 56,5 mg GAE/100g, carotenoids content range from 0,98 to 4,34 µg β-carotene equivalents/g and antioxidant activity, evaluated as DPPH radical scavenging activity, from 12,2 to 46,7%. The Protein profiles showed nearly identical nature of electrophoresis patterns, indicating no eventual change in protein quality. It could be concluded here that the flour of issue from these cultivars provide health benefits and high added value, if included as an ingredient for making new functional food products to meet the demands of health conscious generation.

oats fatty acids starch gluten free proteins β-glucan antioxidant capacity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Abdel-Aal, E. S. M., Young, J. C., Rabalski, I., Hucl, P., & Fregeau-Reid, J. Identification and quantification of seed carotenoids in selected wheat species. Journal of agricultural and food chemistry. 2007; 55(3): 787-794.
[2]  American Association of Cereal Chemists, Approved Methods, 8 ed., Saint Paul, 1983.
[3]  Association of Official Analytical Chemists, Methods of analysis for nutrition labeling, Airlington, USA, 1993.
[4]  Banas, A., Debski, H., Banas, W., Heneen, W. K., Dahlqvist, A., Bafor, M., et al. Lipids in grain tissues of oat (Avena sativa): differences in content, time of deposition, and fatty acid composition, Journal of Experimental Botany, 58(10). 2463-2470. 2007.
[5]  Brindzova, L., Certik, M., Rapta, P., Zalibera, M., Mikulajova, A., and Takacsova, M. Antioxidant activity, β-glucan and lipid contents of oat varieties, Czech journal of food sciences, 26(3). 163-173. 2008.
[6]  Broeck, H. C. V., Londono, D. M., Timmer, R., Smulders, M. J., Ludovicus, J. W. J., & Vander Meer, I. M. Profiling of Nutritional and Health-Related Compounds in Oat Varieties, Foods, 5(1). 2. 2015.
[7]  Daglioglu, O., Tasan, M., and Tunçel, B. Determination of fatty acid composition and total trans fatty acids in cereal-based Turkish foods, Turkish Journal of Chemistry, 26(5). 705-710. 2002.
[8]  Dhanda, R. K. Fatty acid composition in diverse oat germplasm. Doctoral dissertation. 2011.
[9]  Doehlert, D. C. Quality improvement in oat, Journal of crop production, 5(1-2). 165-189. 2002.
[10]  Halima, N. B., Saad, R. B., Khemakhem, B., Fendri, I., and Abdelkafi, S. Oat (Avena sativa L.): Oil and Nutriment Compounds Valorization for Potential Use in Industrial Applications, Journal of Oleo Science, 64(9). 915-932. 2015.
[11]  Hosseinian, F., Oomah, B. D., and Campos-Vega, R. (Eds.). Dietary Fibre Functionality in Food and Nutraceuticals: From Plant to Gut. John Wiley & Sons. 2016.
[12]  I.S.1155, (1968). Specification for wheat Atta / I.S.I. Hand book of food analysis pp, 115.
[13]  Justyna, R. K., Miskiewicz, K, Nebesny, E., and Makowski, B. Plant Lipids Science, Technology, Nutritional Value and Benefits to Human Health: Composition and functional properties of lipid components from selected cereal grains. Editors: Grazyna Budryn and Dorota Zyzelewicz. 2015: 119-145.
[14]  Leonova, S., Shelenga, T., Hamberg, M., Konarev, A. V., Loskutov, I., and Carlsson, A. S. Analysis of oil composition in cultivars and wild species of oat (Avena sp.), Journal of agricultural and food chemistry, 56(17). 7983-7991. 2008.
[15]  Lim, W. J., Liang, Y. T., Seib, P. A., and Rao, C. S. Isolation of oat starch from oat flour, Journal of Cereal Chemistry, 69(3), 233-236. 1992.
[16]  Loskutov, I. G. Interspecific Crosses in the Genus Avena L, Russian Journal of Genetics, 37(5), 467-475. 2001.
[17]  Manzali, R., Bouksaim, M., Bendou, M., Zouahri, A., Benchekroun, M., Douaik, A., and Saidi, N. Evaluation of Technological Potential of New Developed Moroccan Hexaploid Oat Lines, International Journal of Engineering Research and Technology, 3(7), 1760-1767. 2014.
[18]  Manzali, R., Benchekroun, M., Douaik, A., Ait ellalia, W., Bouksaim, M., and Saidi, N. Improving Groat beta-Glucan Content of Developed Hexaploid Oat Lines Derivative of Interspecific Crosses. Journal of Biology Agriculture and Healthcare, 6(12), 34-41. 2016.
[19]  Martinez, M. F., Arelovich, H. M., and Wehrhahne, L. N. Grain yield, nutrient content and lipid profile of oat genotypes grown in a semiarid environment, Field crops research, 116(1), 92-100. 2010.
[20]  McCleary, B. V. Megazyme: Mixed-linkage beta-glucan assay procedure (McCleary method). Bray Business Park, Bray, 1-15. 2006.
[21]  Mikola, M. Electrophoretic studies on the endoproteinases of oat grain. University of Helsinki, Department of Food Technology. 2001.
[22]  Ndolo, V. U., and Beta, T. Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels, Food chemistry, 139(1), 663-671. 2013.
[23]  Ochuodho, J. O., Modi, A. T., and Beukes, M. Accumulation of seed storage proteins in Cleome gynandra L. and Brassica kaber L, South African Journal of Botany, 72(2), 238-244. 2006.
[24]  Singh, R., De, S., and Belkheir, A. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: an overview, Critical reviews in food science and nutrition, 53(2), 126-144. 2013.
[25]  Singleton, V. L., Orthofer, R., and Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Methods in enzymology, 299, 152-178. 1999.
[26]  Sterna, V., Zute, S., Brunava, L., and Vicupe, Z. Lipid composition of oat grain grown in Latvia. In 9th Baltic Conference on Food Science and Technology “Food for Consumer Well-Being”. p. 77. 2014.
[27]  Van Soest, Robertson, P.J. J.B. and Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition, Journal Dairy Science, 74, 3583-3597. 1991.
[28]  Zhang, N., Li, D., Zhang, X., Shi, Y., and Wang, H. Solid-state fermentation of whole oats to yield a synbiotic food rich in lactic acid bacteria and prebiotics, Food and function, 6(8), 2620-2625. 2015.
[29]  Zhou, M., Robards, K., Glennie-Holmes, M., and Helliwell, S. Oat lipids, Journal of the American Oil Chemists' Society, 76(2), 159-169. 1999.