International Journal of Celiac Disease
ISSN (Print): 2334-3427 ISSN (Online): 2334-3486 Website: Editor-in-chief: Samasca Gabriel
Open Access
Journal Browser
International Journal of Celiac Disease. 2016, 4(3), 95-101
DOI: 10.12691/ijcd-4-3-6
Open AccessArticle

Faecal Concentrations of Short-chain Fatty Acids and Selected Bacteria in Healthy and Celiac Children

Maša Primec1, , Martina Klemenak2, Irene Aloisio3, Mario Gorenjak4, 5, Diana Di Gioia3, Dušanka Mičetić-Turk6 and Tomaž Langerholc1

1Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia

2Department of Pediatrics, University Clinical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia

3Department of Agricultural Sciences, University of Bologna, viale Fanin 42, 40127 Bologna, Italy

4Department of Animal Science, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia

5Centre for Human Molecular Genetics and Pharmacogenomics and Department of Biochemistry and Nutrition, both Faculty of Medicine, Taborska ulica 8, 2000 Maribor, Slovenia

6Department of Pediatrics, Faculty of medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia

Pub. Date: October 11, 2016

Cite this paper:
Maša Primec, Martina Klemenak, Irene Aloisio, Mario Gorenjak, Diana Di Gioia, Dušanka Mičetić-Turk and Tomaž Langerholc. Faecal Concentrations of Short-chain Fatty Acids and Selected Bacteria in Healthy and Celiac Children. International Journal of Celiac Disease. 2016; 4(3):95-101. doi: 10.12691/ijcd-4-3-6


Background: Knowledge about the interplay between diet, microbiota and short-chain fatty acids (SCFAs) so far exists. Moreover, raising evidence suggests their influence on the pathogenesis of the celiac disease (CD). Objective: Our aim was to study and evaluate differences in the composition of selected bacterial groups and SCFAs in faeces of healthy and CD children. Methods: The study included 41 children with CD, 8 newly discovered, not treated children (ND) and 33 children on gluten-free diet for more than 1 year (GFD) and 17 healthy children as a Control group. Bacterial communities and SCFAs in faecal samples were determined by real-time PCR and HPLC analysis, respectively. Results: There were no statistically significant differences between GFD and ND patients. GFD patients compared to Controls had significantly lower Lactobacillus spp. (p = 0.027) and Enterobacteriaceae family group (p = 0.003), but higher propionic acid (p = 0.034). Acetic (p = 0.027) and propionic acid (p = 0.014) were significantly higher in ND patients compared to Controls. Lactobacillus spp. negatively correlated with total SCFAs in the Control and the ND group. In ND and GFD patients, Lactobacillus spp. negatively correlated with Clostridium sensu stricto cluster I. A very strong positive correlation (p = 0.002) between Enterobacteriaceae family and Bacteroides fragilis was found in GFD patients. Conclusions: Changes in microbiota and SCFAs are clearly related to the pathogenesis of CD. As being potential pro-inflammatory agents in CD, acetic and propionic acid may serve as important disease-related markers. Their origin in relation to Lactobacillus and Bifidobacterium is debatable and still need to be further investigated. Enterobacteriaceae family might not be directly addressed to pathogenesis of CD.

celiac disease children gluten-free diet microbiota short-chain fatty acids

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Voreades, N., Kozil, A., Weir, T. L. Diet and the development of the human intestinal microbiome. Frontiers in microbiology, 5, 494. 2014.
[2]  Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., Brown, P. O.. Development of the human infant intestinal microbiota. PLoS biology, 5(7), e177. 2007
[3]  Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z., & Dominguez-Bello, M. G. The infant microbiome development: mom matters. Trends in Molecular Medicine, 21(2), 109-117. 2014.
[4]  Mshvildadze, M., Neu, J. The infant intestinal microbiome: friend or foe? Early human development, 86 Suppl 1, 67-71. 2010.
[5]  Matamoros, S., Gras-Leguen, C., Le Vacon, F., Potel, G., de La Cochetiere, M.-F. Development of intestinal microbiota in infants and its impact on health. Trends in microbiology, 21(4), 167-73. 2013.
[6]  Arrieta, M.-C., Stiemsma, L. T., Amenyogbe, N., Brown, E. M., Finlay, B. The intestinal microbiome in early life: health and disease. Frontiers in immunology, 5, 427. 2014.
[7]  Hopkins, M. J., Macfarlane, G. T., Furrie, E., Fite, A., Macfarlane, S. Characterisation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation analyses. FEMS microbiology ecology, 54(1), 77-85. 2005.
[8]  Penders, J., Vink, C., Driessen, C., London, N., Thijs, C., & Stobberingh, E. E. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS microbiology letters, 243(1), 141-7. 2005.
[9]  Gerber, G. K. The dynamic microbiome. FEBS letters, 588(22), 4131-9. 2014.
[10]  de Sousa Moraes, L. F., Grzeskowiak, L. M., de Sales Teixeira, T. F., Gouveia Peluzio, M. do C. Intestinal microbiota and probiotics in celiac disease. Clinical microbiology reviews, 27(3), 482-9. 2014.
[11]  Cenit, M. C., Olivares, M., Codoñer-Franch, P., Sanz, Y. Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution? Nutrients, 7(8), 6900-23. 2015.
[12]  Leonard, M. M., Camhi, S., Huedo-Medina, T. B., Fasano, A. Celiac Disease Genomic, Environmental, Microbiome, and Metabolomic (CDGEMM) Study Design: Approach to the Future of Personalized Prevention of Celiac Disease. Nutrients, 7(11), 9325-36. 2015.
[13]  Sánchez, E., Donat, E., Ribes-Koninckx, C., Fernández-Murga, M. L., Sanz, Y. Duodenal-mucosal bacteria associated with celiac disease in children. Applied and environmental microbiology, 79(18), 5472-9. 2013.
[14]  Pallav, K., Kabbani, T., Tariq, S., Vanga, R., Kelly, C. P., Leffler, D. A. Clinical utility of celiac disease-associated HLA testing. Digestive diseases and sciences, 59(9), 2199-206. 2014.
[15]  Tuire, I., Marja-Leena, L., Teea, S., Katri, H., Jukka, P., Päivi, S., … Katri, K. Persistent duodenal intraepithelial lymphocytosis despite a long-term strict gluten-free diet in celiac disease. The American journal of gastroenterology, 107(10), 1563-9. 2012.
[16]  Wacklin, P., Kaukinen, K., Tuovinen, E., Collin, P., Lindfors, K., Partanen, J., … Mättö, J. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflammatory bowel diseases, 19(5), 934-41. 2013.
[17]  O’Hara, A. M., Shanahan, F. The gut flora as a forgotten organ. EMBO reports, 7(7), 688-93. 2006.
[18]  De Palma, G., Nadal, I., Collado, M. C., Sanz, Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. The British journal of nutrition, 102(8), 1154-60. 2009.
[19]  Di Cagno, R., De Angelis, M., De Pasquale, I., Ndagijimana, M., Vernocchi, P., Ricciuti, P., … Francavilla, R. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC microbiology, 11, 219. 2012.
[20]  Sanz, Y., Sánchez, E., Marzotto, M., Calabuig, M., Torriani, S., Dellaglio, F. Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS immunology and medical microbiology, 51(3), 562-8. 2007.
[21]  Tjellström, B., Stenhammar, L., Högberg, L., Fälth-Magnusson, K., Magnusson, K.-E., Midtvedt, T., … Norin, E. Gut microflora associated characteristics in children with celiac disease. The American journal of gastroenterology, 100(12), 2784-8. 2005.
[22]  Sanz, Y., De Pama, G., & Laparra, M. Unraveling the ties between celiac disease and intestinal microbiota. International reviews of immunology, 30(4), 207-18. 2011.
[23]  Marasco, G., Di Biase, A. R., Schiumerini, R., Eusebi, L. H., Iughetti, L., Ravaioli, F., … Festi, D. Gut Microbiota and Celiac Disease. Digestive diseases and sciences, 61(6), 1461-72. 2016.
[24]  Wacklin, P., Laurikka, P., Lindfors, K., Collin, P., Salmi, T., Lähdeaho, M.-L., … Kaukinen, K. Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. The American journal of gastroenterology, 109(12), 1933-41. 2014.
[25]  den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D.-J., Bakker, B. M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research, 54(9), 2325-40. 2013.
[26]  Sun, Y., O’Riordan, M. X. D. Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. Advances in applied microbiology, 85, 93-118. 2013.
[27]  Klemenak, M., Dolinšek, J., Langerholc, T., Di Gioia, D., Mičetić-Turk, D. Administration of Bifidobacterium breve Decreases the Production of TNF-α in Children with Celiac Disease. Digestive diseases and sciences, 60(11), 3386-92. 2015.
[28]  Torii, T., Kanemitsu, K., Wada, T., Itoh, S., Kinugawa, K., Hagiwara, A. Measurement of short-chain fatty acids in human faeces using high-performance liquid chromatography: specimen stability. Annals of clinical biochemistry, 47(Pt 5), 447-52. 2010.
[29]  Aloisio, I., Mazzola, G., Corvaglia, L. T., Tonti, G., Faldella, G., Biavati, B., Di Gioia, D. Influence of intrapartum antibiotic prophylaxis against group B Streptococcus on the early newborn gut composition and evaluation of the anti-Streptococcus activity of Bifidobacterium strains. Applied microbiology and biotechnology, 98(13), 6051-60. 2014.
[30]  Bartosch, S., Fite, A., Macfarlane, G. T., McMurdo, M. E. T. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Applied and environmental microbiology, 70(6), 3575-81. 2004.
[31]  Song, Y., Liu, C., Finegold, S. M. Real-time PCR quantitation of clostridia in feces of autistic children. Applied and environmental microbiology, 70(11), 6459-65. 2004.
[32]  Collado, M. C., Donat, E., Ribes-Koninckx, C., Calabuig, M., Sanz, Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. Journal of clinical pathology, 62(3), 264-9. 2009.
[33]  Murch, S. Recent Advances in Celiac Disease. Indian journal of pediatrics. 2016.
[34]  Nadal, I., Donat, E., Donant, E., Ribes-Koninckx, C., Calabuig, M., Sanz, Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. Journal of medical microbiology, 56(Pt 12), 1669-74. 2007.
[35]  De Palma, G., Nadal, I., Medina, M., Donat, E., Ribes-Koninckx, C., Calabuig, M., Sanz, Y. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiology, 10(1), 63. 2010.
[36]  Collado, M. C., Calabuig, M., Sanz, Y. Differences between the fecal microbiota of coeliac infants and healthy controls. Current issues in intestinal microbiology, 8(1), 9-14. 2007.
[37]  Collado, M. C., Donat, E., Ribes-Koninckx, C., Calabuig, M., Sanz, Y. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC microbiology, 8(1), 232. 2008.
[38]  Schippa, S., Iebba, V., Barbato, M., Di Nardo, G., Totino, V., Checchi, M., … Conte, M. A distinctive “microbial signature” in celiac pediatric patients. BMC Microbiology, 10(1), 175. 2010.
[39]  De Palma, G., Cinova, J., Stepankova, R., Tuckova, L., Sanz, Y. Pivotal Advance: Bifidobacteria and Gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. Journal of leukocyte biology, 87(5), 765-78. 2010.
[40]  Lorenzo Pisarello, M. J., Vintiñi, E. O., González, S. N., Pagani, F., Medina, M. S. Decrease in lactobacilli in the intestinal microbiota of celiac children with a gluten-free diet, and selection of potentially probiotic strains. Canadian journal of microbiology, 61(1), 32-7. 2015.
[41]  Sánchez, E., Ribes-Koninckx, C., Calabuig, M., Sanz, Y. Intestinal Staphylococcus spp. and virulent features associated with coeliac disease. Journal of clinical pathology, 65(9), 830-4. 2012.
[42]  Sanz, Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans. Gut microbes, 1(3), 135-7. 2010.
[43]  Rajilić-Stojanović, M., de Vos, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS microbiology reviews, 38(5), 996-1047. 2014.
[44]  Nistal, E., Caminero, A., Vivas, S., Ruiz de Morales, J. M., Sáenz de Miera, L. E., Rodríguez-Aparicio, L. B., Casqueiro, J. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie, 94(8), 1724-9. 2012.
[45]  Tjellström, B., Högberg, L., Stenhammar, L., Fälth-Magnusson, K., Magnusson, K.-E., Norin, E., … Midtvedt, T. Faecal short-chain fatty acid pattern in childhood coeliac disease is normalised after more than one year’s gluten-free diet. Microbial ecology in health and disease, 24. 2013.
[46]  Di Cagno, R., Rizzello, C. G., Gagliardi, F., Ricciuti, P., Ndagijimana, M., Francavilla, R., … De Angelis, M. Different fecal microbiotas and volatile organic compounds in treated and untreated children with celiac disease. Applied and environmental microbiology, 75(12), 3963-71. 2009.