International Journal of Celiac Disease
ISSN (Print): 2334-3427 ISSN (Online): 2334-3486 Website: Editor-in-chief: Samasca Gabriel
Open Access
Journal Browser
International Journal of Celiac Disease. 2021, 9(2), 41-64
DOI: 10.12691/ijcd-9-2-7
Open AccessArticle

Nonresponsive Celiac Disease Treated with a Unique Functional Medical Approach

Tom O'Bryan1, and Aaron Lerner2

1Private Practice, National University of Health Sciences, Lombard, Illinois, The Institute for Functional Medicine, United States

2Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, 5262000, Israel

Pub. Date: May 18, 2021

Cite this paper:
Tom O'Bryan and Aaron Lerner. Nonresponsive Celiac Disease Treated with a Unique Functional Medical Approach. International Journal of Celiac Disease. 2021; 9(2):41-64. doi: 10.12691/ijcd-9-2-7


A 16-year-old boy with nonresponsive celiac disease (NRCD), dermatitis herpetiformis, short stature, and failure to thrive, presented to this Functional Medicine practitioner because he had exceedingly high tissue transglutaminase (tTG) antibodies and poor growth, despite 10 months on a meticulous gluten-free diet (GFD). Immunological testing showed elevated antibody production against multiple peptides of wheat, food antigens, intestinal barrier dysfunction, lipopolysaccharide (LPS) antibodies, and polyreactive autoimmune reactions. An elimination diet, nutraceutical protocols to modulate the microbiome, address intestinal permeability, lower inflammation, and remove underlying bacterial infection were initiated. Global anti-inflammatory lifestyle modifications were recommended. Within 3 months of treatment, the patient’s tTG antibodies decreased by 14% for the first time since strict gluten elimination. Within 15 months, tTG IgG antibodies were nearly normal at 1.61 (0.03-1.60, ELISA Index). Test results improved dramatically in tandem with clinical progress. On a GFD and after initiating and maintaining these dietary and lifestyle changes, he gained 12 inches and 40 pounds. To our knowledge, this is the first published case of complete reversal of NRCD and failure to thrive by addressing endotoxin and lifestyle outside of a GFD.

celiac disease Nonresponsive Celiac Disease (NRCD) wheat related disorder tissue transglutaminase intestinal permeability environmental enteric dysfunction polyreactive antibodies phospholipid antibodies gluten contamination elimination diet functional medicine

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 12


[1]  Lucendo, A.; Rodrigo, L.; A, P., Extraintestinal Manifestations of Celiac Disease and Associated Disorders. In Advances in the Understanding of Gluten Related Pathology and the Evolution of Gluten- Free Foods, Araz, E.; Fernandez-Banares, F.; Rosel, C.; Rodrigo, L.; Pena, A., Eds. Omnia Science: Barcelona, Spain, 2015; pp 341-407.
[2]  Hadjivassiliou, M.; Grunewald, R. A.; Davies-Jones, G. A., Gluten sensitivity as a neurological illness. J Neurol Neurosurg Psychiatry 2002, 72 (5), 560-3.
[3]  Fasano, A.; Catassi, C., Current approaches to diagnosis and treatment of celiac disease: an evolving spectrum. Gastroenterology. 2001, 120 (3), 636-51.
[4]  Lerner A, Matthias T. GUT-the Trojan horse in remote organs’ autoimmunity. J of Clin & Cell Immunol. 2016; 7: 401.
[5]  Lerner A. Matthias T. Autoimmunity in celiac disease: extra- intestinal manifestations. Autoimm. Rev. 2019; 18: 241-246.
[6]  Samasca G, Ramesh A, Sur D, Cornel A, Sur L, Floca E, SurG, Lupan L, Matthias T, Lerner A. Polyautoimmunity - The missing ingredient. Autoimmun Rev. June 2018.
[7]  Lerner A, Freire de Carvalho J. The Gut Feeling of the Heart: Pathophysiological Pathways in the Gut-heart Axis in Celiac Disease. Internat J Celiac Dis. 2020; 8: 120-123.
[8]  Ciaccio, E. J.; Lewis, S. K.; Biviano, A. B.; Iyer, V.; Garan, H.; Green, P. H., Cardiovascular involvement in celiac disease. World J Cardiol 2017, 9 (8), 652-666.
[9]  Lerner A, Steigerwald C, Matthias T: Feed your microbiome and your heart. Frontiers in Biosciences Front Biosci. (Landmark Ed) 2021; 26: 468-477.
[10]  Elfstrom, P.; Granath, F.; Ekstrom Smedby, K.; Montgomery, S. M.; Askling, J.; Ekbom, A.; Ludvigsson, J. F., Risk of lymphoproliferative malignancy in relation to small intestinal histopathology among patients with celiac disease. J Natl Cancer Inst 2011, 103 (5), 436-44.
[11]  Kim, H. S.; Unalp-Arida, A.; Ruhl, C. E.; Choung, R. S.; Murray, J. A., Autoimmune and Allergic Disorders are More Common in People With Celiac Disease or on a Gluten-free Diet in the United States. J Clin Gastroenterol 2019, 53 (10), e416-e423.
[12]  Mearns, E. S.; Taylor, A.; Thomas Craig, K. J.; Puglielli, S.; Leffler, D. A.; Sanders, D. S.; Lebwohl, B.; Hadjivassiliou, M., Neurological Manifestations of Neuropathy and Ataxia in Celiac Disease: A Systematic Review. Nutrients 2019, 11 (2).
[13]  Lerner A, Makhoul BF, Eliakim R. Neurological manifestations of celiac disease in children and adults. Europ Neurolog J. 2012; 4: 15-20.
[14]  Zelnik, N.; Pacht, A.; Obeid, R.; Lerner, A., Range of neurologic disorders in patients with celiac disease. Pediatrics 2004, 113 (6), 1672-6.
[15]  Thawani, S. P.; Brannagan, T. H., 3rd; Lebwohl, B.; Green, P. H.; Ludvigsson, J. F., Risk of Neuropathy Among 28, 232 Patients With Biopsy-Verified Celiac Disease. JAMA Neurol 2015, 72 (7), 806-11.
[16]  Makhlouf, S.; Messelmani, M.; Zaouali, J.; Mrissa, R., Cognitive impairment in celiac disease and non-celiac gluten sensitivity: review of literature on the main cognitive impairments, the imaging and the effect of gluten free diet. Acta Neurol Belg 2018, 118 (1), 21-27.
[17]  Lerner A. Benzvi C. “Let food be thy medicine”: gluten and potential role in neurodegeneration. Cells 2021, 10, 756.
[18]  Lerner A, Neidhöfer S, Matthias T. The gut microbiome feelings of the brain: perspective for Non-Microbiologists. Microorganisms, 2017; 5(4), 66.
[19]  Cascella, N. G.; Kryszak, D.; Bhatti, B.; Gregory, P.; Kelly, D. L.; Mc Evoy, J. P.; Fasano, A.; Eaton, W. W., Prevalence of celiac disease and gluten sensitivity in the United States clinical antipsychotic trials of intervention effectiveness study population. Schizophr Bull 2011, 37 (1), 94-100.
[20]  Conti, V.; Leone, M. C.; Casato, M.; Nicoli, M.; Granata, G.; Carlesimo, M., High prevalence of gluten sensitivity in a cohort of patients with undifferentiated connective tissue disease. Eur Ann Allergy Clin Immunol 2015, 47 (2), 54-7.
[21]  Burkhardt, J. G.; Chapa-Rodriguez, A.; Bahna, S. L., Gluten sensitivities and the allergist: Threshing the grain from the husks. Allergy 2018, 73 (7), 1359-1368.
[22]  Krums, L. M.; Babaian, A. F.; Bykova, S. V.; Lishchinskaia, A. A.; Khomeriki, S. G.; Gudkova, R. B.; Sabel'nikova, E. A.; Kniazev, O. V.; Parfenov, A. I., Celiac disease associated with ulcerative colitis. Ter Arkh 2019, 91 (2), 87-90.
[23]  Lerner A, Neidhöfer S, Matthias T. The gut-gut axis: Cohabitation of celiac, Crohn’s disease and IgA deficiency. Internat J Celiac Dis. 2016: 4: 68-70.
[24]  Cheung, C. K.; Barratt, J., Gluten and IgA nephropathy: you are what you eat? Kidney Int 2015, 88 (2), 215-8.
[25]  Lerner A, Berthelot L, Jeremias P, Abbad L, Matthias T, Monteiro RC. Gut-kidney axis: gluten, transglutaminase, celiac disease and IgA nephropathy JCCI, 2017; 8: 499-503.
[26]  Lerner A. Blank M. Hypercoagulability in celiac disease-an update. Autoimmun Rev. 2014; 13: 1138-41.
[27]  Lerner A, Jeremias P, Matthias T. The gut-thyroid axis and celiac disease. Endocrinol Connections, 2017; 6: R52-R58.
[28]  Lerner A, Matthias T. Autoimmune thyroid diseases in celiac disease: if and when to screen? Internat J Celiac Dis. 2016: 4: 124-6.
[29]  Lerner A, Matthias T.Gut- bone cross talks and implications in celiac disease. Internat J of Celiac dis. 2016; 4: 19-23.
[30]  Lerner A, Matthias T. The gut feeling of the joints: celiac disease and rheumatoid arthritis are related. Internat J Celiac Dis. 2019; 7: 21-25.
[31]  LernerA, Matthias T. Rheumatoid arthritis-celiac disease relationship: joints get that gut feeling. Autoimm Rev. 2015; 14: 1038-47.
[32]  Lerner A, Jeremias P, Matthias T. Nutrients, bugs and us: the short-chain fatty acids story in celiac disease. Internat J Celiac Dis. 2016; 4; 92-94.
[33]  Lerner A, Matthias T. Gluten free diet- tough ally in torrid time. Internat J of Celiac Dis. 2017; 5: 50-55.
[34]  Lerner A, O’Bryan T, Matthias T. Navigating the gluten-free diet boom: the dark side of gluten free diet. Front Pediatr. 2019; 7: Article 414.
[35]  Pes, G. M.; Bibbo, S.; Dore, M. P., Coeliac disease: beyond genetic susceptibility and gluten. A narrative review. Ann Med 2019, 51 (1), 1-16.
[36]  Lerner A, Ramesh A, Matthias T. David and Goliath war revival in the enteric viruses and microbiota struggle. Potential implication for celiac disease. Microorganisms, 2019; 7: 173.
[37]  Lerner A, Matthias T. Candida albicans in celiac disease: a wolf in sheep's clothing. Autoimm Rev. 2020; 19: 102621.
[38]  Lerner A, Arleevskaya M, Schmiedl A, Matthias T. Microbes and viruses are bugging the gut in celiac disease. Are they friends or foes? Front in Microbiol. 2017; 8: 1392.
[39]  Lebwohl, B.; Murray, J. A.; Verdu, E. F.; Crowe, S. E.; Dennis, M.; Fasano, A.; Green, P. H.; Guandalini, S.; Khosla, C., Gluten Introduction, Breastfeeding, and Celiac Disease: Back to the Drawing Board. The American journal of gastroenterology. 2015.
[40]  Boyce, J. A.; Assa'ad, A.; Burks, A. W.; Jones, S. M.; Sampson, H. A.; Wood, R. A.; Plaut, M.; Cooper, S. F.; Fenton, M. J.; Arshad, S. H.; Bahna, S. L.; Beck, L. A.; Byrd-Bredbenner, C.; Camargo, C. A., Jr.; Eichenfield, L.; Furuta, G. T.; Hanifin, J. M.; Jones, C.; Kraft, M.; Levy, B. D.; Lieberman, P.; Luccioli, S.; McCall, K. M.; Schneider, L. C.; Simon, R. A.; Simons, F. E.; Teach, S. J.; Yawn, B. P.; Schwaninger, J. M., Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAID-sponsored expert panel report. Nutrition research 2011, 31 (1), 61-75.
[41]  Sollid, L. M.; Kolberg, J.; Scott, H.; Ek, J.; Fausa, O.; Brandtzaeg, P., Antibodies to wheat germ agglutinin in coeliac disease. Clinical and experimental immunology 1986, 63 (1), 95-100.
[42]  Kitano, N.; Taminato, T.; Ida, T.; Seno, M.; Seino, Y.; Matsukura, S.; Kuno, S.; Imura, H., Detection of antibodies against wheat germ agglutinin bound glycoproteins on the islet-cell membrane. Diabetic medicine: a journal of the British Diabetic Association 1988, 5 (2), 139-44.
[43]  Vojdani, A.; O'Bryan, T.; Green, J. A.; McCandless, J.; Woeller, K. N.; Vojdani, E.; Nourian, A. A.; Cooper, E. L., Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism. Nutritional neuroscience 2004, 7 (3), 151-61.
[44]  Wildmann, J.; Vetter, W.; Ranalder, U. B.; Schmidt, K.; Maurer, R.; Mohler, H., Occurrence of pharmacologically active benzodiazepines in trace amounts in wheat and potato. Biochemical pharmacology 1988, 37 (19), 3549-59.
[45]  Pruimboom, L.; de Punder, K., The opioid effects of gluten exorphins: asymptomatic celiac disease. J Health Popul Nutr 2015, 33, 24.
[46]  Schuppan, D.; Pickert, G.; Ashfaq-Khan, M.; Zevallos, V., Non-celiac wheat sensitivity: differential diagnosis, triggers and implications. Best practice & research. Clinical gastroenterology. 2015, 29 (3), 469-76.
[47]  Biesiekierski, J. R.; Peters, S. L.; Newnham, E. D.; Rosella, O.; Muir, J. G.; Gibson, P. R., No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology 2013, 145 (2), 320-8 e1-3.
[48]  Carroccio, A.; D'Alcamo, A.; Cavataio, F.; Soresi, M.; Seidita, A.; Sciume, C.; Geraci, G.; Iacono, G.; Mansueto, P., High Proportions of People With Nonceliac Wheat Sensitivity Have Autoimmune Disease or Antinuclear Antibodies. Gastroenterology 2015, 149 (3), 596-603 e1.
[49]  Lerner A, Ramesh A, Matthias T. Serological diagnosis of celiac disease: new biomarkers. Gastroenterol Clin North Amer. 2019; 48: 307-317.
[50]  O'Bryan, T.; Ford, R.; Kupper, C., Celiac Disease and Non-Celiac Gluten Sensitivity. In Advancing Medicine with Food and Nutrients, 2 ed. Kohlstadt, I., Ed. Taylor & Francis Group: Boca Raton, 2013.
[51]  Toftedal, P.; Nielsen, C.; Madsen, J. T.; Titlestad, K.; Husby, S.; Lillevang, S. T., Positive predictive value of serological diagnostic measures in celiac disease. Clinical chemistry and laboratory medicine : CCLM / FESCC 2010, 48 (5), 685-91.
[52]  DeMelo, E. N.; McDonald, C.; Saibil, F.; Marcon, M. A.; Mahmud, F. H., Celiac Disease and Type 1 Diabetes in Adults: Is This a High-Risk Group for Screening? Canadian journal of diabetes. 2015.
[53]  Burgin-Wolff, A.; Mauro, B.; Faruk, H., Intestinal biopsy is not always required to diagnose celiac disease: a retrospective analysis of combined antibody tests. BMC gastroenterology. 2013, 13, 19.
[54]  Zanini, B.; Magni, A.; Caselani, F.; Lanzarotto, F.; Carabellese, N.; Villanacci, V.; Ricci, C.; Lanzini, A., High tissue-transglutaminase antibody level predicts small intestinal villous atrophy in adult patients at high risk of celiac disease. Digestive and liver disease: official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2012, 44 (4), 280-5.
[55]  Lerner A, Neidhöfer S, Matthias T. Serological markers and/or intestinal biopsies in the case-finding of celiac disease. Editorial, Internat. J Celiac dis. 2015; 3: 53-55.
[56]  Hill, I. D.; Dirks, M. H.; Liptak, G. S.; Colletti, R. B.; Fasano, A.; Guandalini, S.; Hoffenberg, E. J.; Horvath, K.; Murray, J. A.; Pivor, M.; Seidman, E. G.; North American Society for Pediatric Gastroenterology, H.; Nutrition, Guideline for the diagnosis and treatment of celiac disease in children: recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr. 2005, 40 (1), 1-19.
[57]  Lebwohl, B.; Granath, F.; Ekbom, A.; Montgomery, S. M.; Murray, J. A.; Rubio-Tapia, A.; Green, P. H.; Ludvigsson, J. F., Mucosal healing and mortality in coeliac disease. Aliment Pharmacol Ther 2013, 37 (3), 332-9.
[58]  Rubio-Tapia, A.; Barton, S. H.; Murray, J. A., Celiac disease and persistent symptoms. Clin Gastroenterol Hepatol 2011, 9 (1), 13-7; quiz e8.
[59]  Shan, L.; Molberg, O.; Parrot, I.; Hausch, F.; Filiz, F.; Gray, G. M.; Sollid, L. M.; Khosla, C., Structural basis for gluten intolerance in celiac sprue. Science 2002, 297 (5590), 2275-9.
[60]  Shan, L.; Qiao, S. W.; Arentz-Hansen, H.; Molberg, O.; Gray, G. M.; Sollid, L. M.; Khosla, C., Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue. J Proteome Res 2005, 4 (5), 1732-41.
[61]  Lerner A, Jeremias P, Matthias T. Outside of normal limits: false +/- anti TG2 autoantibodies. Intern. J of Celiac Dis. 2015; 3: 87-90.
[62]  Lerner A, Neidhöfer S, Matthias T. Anti-tTg-IgA is neither a solved problem nor a “closed case” in celiac disease diagnosis. Internat J Celiac Dis, 2017; 5: 97-100.
[63]  Dewar, D. H.; Donnelly, S. C.; McLaughlin, S. D.; Johnson, M. W.; Ellis, H. J.; Ciclitira, P. J., Celiac disease: management of persistent symptoms in patients on a gluten-free diet. World J Gastroenterol 2012, 18 (12), 1348-56.
[64]  CDC Children Growth Chart Calculator National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data. (accessed July 13, 2020).
[65]  Mubarak, A.; Wolters, V. M.; Gmelig-Meyling, F. H.; Ten Kate, F. J.; Houwen, R. H., Tissue transglutaminase levels above 100 U/mL and celiac disease: a prospective study. World J Gastroenterol 2012, 18 (32), 4399-403.
[66]  Hollon, J. R.; Cureton, P. A.; Martin, M. L.; Puppa, E. L.; Fasano, A., Trace gluten contamination may play a role in mucosal and clinical recovery in a subgroup of diet-adherent non-responsive celiac disease patients. BMC gastroenterology 2013, 13, 40.
[67]  Addolorato, G.; Mirijello, A.; D'Angelo, C.; Leggio, L.; Ferrulli, A.; Vonghia, L.; Cardone, S.; Leso, V.; Miceli, A.; Gasbarrini, G., Social phobia in coeliac disease. Scand J Gastroenterol 2008, 43 (4), 410-5.
[68]  Ludvigsson, J. F.; Sellgren, C.; Runeson, B.; Langstrom, N.; Lichtenstein, P., Increased suicide risk in coeliac disease--a Swedish nationwide cohort study. Digestive and liver disease: official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 2011, 43 (8), 616-22.
[69]  Marild, K.; Ye, W.; Lebwohl, B.; Green, P. H.; Blaser, M. J.; Card, T.; Ludvigsson, J. F., Antibiotic exposure and the development of coeliac disease: a nationwide case-control study. BMC gastroenterology 2013, 13, 109.
[70]  De Sanctis, V.; Di Maio, S.; Soliman, A. T.; Raiola, G.; Elalaily, R.; Millimaggi, G., Hand X-ray in pediatric endocrinology: Skeletal age assessment and beyond. Indian J Endocrinol Metab 2014, 18 (Suppl 1), S63-71.
[71]  Bucci, C.; Zingone, F.; Russo, I.; Morra, I.; Tortora, R.; Pogna, N.; Scalia, G.; Iovino, P.; Ciacci, C., Gliadin does not induce mucosal inflammation or basophil activation in patients with nonceliac gluten sensitivity. Clin Gastroenterol Hepatol. 2013, 11 (10), 1294-1299.e1.
[72]  Molina-Infante, J.; Carroccio, A., Suspected Nonceliac Gluten Sensitivity Confirmed in Few Patients After Gluten Challenge in Double-Blind, Placebo-Controlled Trials. Clin Gastroenterol Hepatol 2017, 15 (3), 339-348.
[73]  Rosinach, M.; Fernández-Bañares, F.; Carrasco, A.; Ibarra, M.; Temiño, R.; Salas, A.; Esteve, M., Double-Blind Randomized Clinical Trial: Gluten versus Placebo Rechallenge in Patients with Lymphocytic Enteritis and Suspected Celiac Disease. PLoS One 2016, 11 (7), e0157879.
[74]  Zevallos, V. F.; Raker, V.; Tenzer, S.; Jimenez-Calvente, C.; Ashfaq-Khan, M.; Rüssel, N.; Pickert, G.; Schild, H.; Steinbrink, K.; Schuppan, D., Nutritional Wheat Amylase-Trypsin Inhibitors Promote Intestinal Inflammation via Activation of Myeloid Cells. Gastroenterology 2017, 152 (5), 1100-1113.e12.
[75]  Vojdani, A.; Lambert, J., The onset of enhanced intestinal permeability and food sensitivity triggered by medication used in dental procedures: a case report. Case Rep Gastrointest Med 2012, 2012, 265052.
[76]  Bonds, R. S.; Midoro-Horiuti, T.; Goldblum, R., A structural basis for food allergy: the role of cross-reactivity. Curr Opin Allergy Clin Immunol 2008, 8 (1), 82-6.
[77]  Lambert, J.; Vojdani, A., Correlation of tissue antibodies and food immune reactivity in randomly selected patient specimens. J Clin Cell Immunol 2017, 8, 521.
[78]  Vojdani, A., Antibodies as predictors of complex autoimmune diseases. Int J Immunopathol Pharmacol 2008, 21 (2), 267-78.
[79]  Arbuckle, M. R.; McClain, M. T.; Rubertone, M. V.; Scofield, R. H.; Dennis, G. J.; James, J. A.; Harley, J. B., Development of autoantibodies before the clinical onset of systemic lupus erythematosus. The New England journal of medicine 2003, 349 (16), 1526-33.
[80]  Tozzoli, R., The diagnostic role of autoantibodies in the prediction of organ-specific autoimmune diseases. Clinical chemistry and laboratory medicine: CCLM / FESCC 2008, 46 (5), 577-87.
[81]  Bizzaro, N., Autoantibodies as predictors of disease: the clinical and experimental evidence. Autoimmun Rev 2007, 6 (6), 325-33.
[82]  Corthesy, B., Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol 2013, 4, 185.
[83]  Poullis, A.; Foster, R.; Northfield, T. C.; Mendall, M. A., Review article: faecal markers in the assessment of activity in inflammatory bowel disease. Aliment Pharmacol Ther 2002, 16 (4), 675-81.
[84]  Hemrika, M. H.; Costongs, G. M.; Engels, L. G.; Bos, L. P.; Janson, P. C.; Flendrig, J. A., Clinical relevance of lysozyme in the faeces. Neth J Med 1989, 34 (3-4), 174-81.
[85]  Poxton, I. R., Antibodies to lipopolysaccharide. J Immunol Methods 1995, 186 (1), 1-15.
[86]  Ferrara, F.; Quaglia, S.; Caputo, I.; Esposito, C.; Lepretti, M.; Pastore, S.; Giorgi, R.; Martelossi, S.; Dal Molin, G.; Di Toro, N.; Ventura, A.; Not, T., Anti-transglutaminase antibodies in non-coeliac children suffering from infectious diseases. Clinical and experimental immunology 2010, 159 (2), 217-23.
[87]  Kumar, V.; Rajadhyaksha, M.; Wortsman, J., Celiac disease-associated autoimmune endocrinopathies. Clin Diagn Lab Immunol 2001, 8 (4), 678-85.
[88]  Minich, D., A Review of the Science of Colorful, Plant-Based Food and Practical Strategies for “Eating the Rainbow. Journal of Nutrition and Metabolism 2019, Article ID 2125070.
[89]  Bengmark, S., Nutrition of the critically ill — a 21st-century perspective. Nutrients 2013, 5 (1), 162-207.
[90]  López-Otín, C.; Galluzzi, L.; Freije, J. M. P.; Madeo, F.; Kroemer, G., Metabolic Control of Longevity. Cell 2016, 166 (4), 802-821.
[91]  Hellsten, Y.; Skadhauge, L.; Bangsbo, J., Effect of ribose supplementation on resynthesis of adenine nucleotides after intense intermittent training in humans. Am J Physiol Regul Integr Comp Physiol 2004, 286 (1), R182-8.
[92]  Butler, T., The Jarisch-Herxheimer Reaction After Antibiotic Treatment of Spirochetal Infections: A Review of Recent Cases and Our Understanding of Pathogenesis. Am J Trop Med Hyg 2017, 96 (1), 46-52.
[93]  Shi, Y.; Liu, T.; Nieman, D. C.; Cui, Y.; Li, F.; Yang, L.; Shi, H.; Chen, P., Aerobic Exercise Attenuates Acute Lung Injury Through NET Inhibition. Front Immunol 2020, 11, 409.
[94]  Drabinska, N.; Krupa-Kozak, U.; Ciska, E.; Jarocka-Cyrta, E., Plasma profile and urine excretion of amino acids in children with celiac disease on gluten-free diet after oligofructose-enriched inulin intervention: results of a randomised placebo-controlled pilot study. Amino Acids 2018, 50 (10), 1451-1460.
[95]  Leffler, D. A.; Edwards-George, J.; Dennis, M.; Schuppan, D.; Cook, F.; Franko, D. L.; Blom- Hoffman, J.; Kelly, C. P., Factors that influence adherence to a gluten-free diet in adults with celiac disease. Dig Dis Sci 2008, 53 (6), 1573-81.
[96]  See, J.; Murray, J. A., Gluten-free diet: the medical and nutrition management of celiac disease. Nutr Clin Pract 2006, 21 (1), 1-15.
[97]  Olson, D. A.; Corsi, R. L., In-home formation and emissions of trihalomethanes: the role of residential dishwashers. J Expo Anal Environ Epidemiol 2004, 14 (2), 109-19.
[98]  Rubens Costa Lima, J.; Rouquayrol, M. Z.; Monteiro Callado, M. R.; Florindo Guedes, M. I.; Pessoa, C., Interpretation of the presence of IgM and IgG antibodies in a rapid test for dengue: analysis of dengue antibody prevalence in Fortaleza City in the 20th year of the epidemic. Rev Soc Bras Med Trop 2012, 45 (2), 163-7.
[99]  Vas, J.; Grönwall, C.; Silverman, G. J., Fundamental roles of the innate-like repertoire of natural antibodies in immune homeostasis. Front Immunol 2013, 4, 4.
[100]  Choi, Y. J.; Seelbach, M. J.; Pu, H.; Eum, S. Y.; Chen, L.; Zhang, B.; Hennig, B.; Toborek, M., Polychlorinated biphenyls disrupt intestinal integrity via NADPH oxidase-induced alterations of tight junction protein expression. Environ Health Perspect 2010, 118 (7), 976-81.
[101]  Parker, J. A new hypothesis for the mechanism of glyphosate induced intestinal permeability in the pathogenesis of polycystic ovary syndrome. Journal of the Australasian College of Nutritional and Environmental Medicine 2015, 34 (2).
[102]  Vonaesch, P.; Randremanana, R.; Gody, J. C.; Collard, J. M.; Giles-Vernick, T.; Doria, M.; Vigan- Womas, I.; Rubbo, P. A.; Etienne, A.; Andriatahirintsoa, E. J.; Kapel, N.; Brown, E.; Huus, K. E.; Duffy, D.; Finlay, B. B.; Hasan, M.; Hunald, F. A.; Robinson, A.; Manirakiza, A.; Wegener-Parfrey, L.; Vray, M.; Sansonetti, P. J., Identifying the etiology and pathophysiology underlying stunting and environmental enteropathy: study protocol of the AFRIBIOTA project. BMC Pediatr 2018, 18 (1), 236.
[103]  Guo, S.; Nighot, M.; Al-Sadi, R.; Alhmoud, T.; Nighot, P.; Ma, T. Y., Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal Transduction Pathway Activation of FAK and MyD88. J Immunol 2015, 195 (10), 4999-5010.
[104]  Fasano, A., All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res 2020, 9.
[105]  Junker, Y.; Zeissig, S.; Kim, S. J.; Barisani, D.; Wieser, H.; Leffler, D. A.; Zevallos, V.; Libermann, T. A.; Dillon, S.; Freitag, T. L.; Kelly, C. P.; Schuppan, D., Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med 2012, 209 (13), 2395-408.
[106]  Marie, C.; Ali, A.; Chandwe, K.; Petri, W. A., Jr.; Kelly, P., Pathophysiology of environmental enteric dysfunction and its impact on oral vaccine efficacy. Mucosal Immunol 2018, 11 (5), 1290-1298.
[107]  Thompson, A. J.; Hughes, M.; Anastasova, S.; Conklin, L. S.; Thomas, T.; Leggett, C.; Faubion, W. A.; Miller, T. J.; Delaney, P.; Lacombe, F.; Loiseau, S.; Meining, A.; Richards-Kortum, R.; Tearney, G. J.; Kelly, P.; Yang, G. Z., Position paper: The potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction. Nat Rev Gastroenterol Hepatol 2017, 14 (12), 727-738.
[108]  Denno, D. M.; VanBuskirk, K.; Nelson, Z. C.; Musser, C. A.; Hay Burgess, D. C.; Tarr, P. I., Use of the lactulose to mannitol ratio to evaluate childhood environmental enteric dysfunction: a systematic review. Clin Infect Dis 2014, 59 Suppl 4, S213-9.
[109]  Leonard, M. M.; Sapone, A.; Catassi, C.; Fasano, A., Celiac Disease and Nonceliac Gluten Sensitivity: A Review. Jama 2017, 318 (7), 647-656.
[110]  Lauer, J. M.; Ghosh, S.; Ausman, L. M.; Webb, P.; Bashaasha, B.; Agaba, E.; Turyashemererwa, F. M.; Tran, H. Q.; Gewirtz, A. T.; Erhardt, J.; Duggan, C. P., Markers of Environmental Enteric Dysfunction Are Associated with Poor Growth and Iron Status in Rural Ugandan Infants. J Nutr 2020.
[111]  Mohammadi, R.; Hosseini-Safa, A.; Ehsani Ardakani, M. J.; Rostami-Nejad, M., The relationship between intestinal parasites and some immune-mediated intestinal conditions. Gastroenterol Hepatol Bed Bench 2015, 8 (2), 123-31.
[112]  Sapone, A.; Lammers, K. M.; Mazzarella, G.; Mikhailenko, I.; Cartenì, M.; Casolaro, V.; Fasano, A., Differential mucosal IL-17 expression in two gliadin-induced disorders: gluten sensitivity and the autoimmune enteropathy celiac disease. Int Arch Allergy Immunol 2010, 152 (1), 75-80.
[113]  Millward, D. J., Nutrition, infection and stunting: the roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr Res Rev 2017, 30 (1), 50-72.
[114]  Bayrak, N. A.; Volkan, B.; Haliloglu, B.; Kara, S. S.; Cayir, A., The effect of celiac disease and gluten-free diet on pubertal development: a two-center study. J Pediatr Endocrinol Metab 2020, 33 (3), 409-415.
[115]  Owino, V.; Ahmed, T.; Freemark, M.; Kelly, P.; Loy, A.; Manary, M.; Loechl, C., Environmental Enteric Dysfunction and Growth Failure/Stunting in Global Child Health. Pediatrics 2016, 138 (6).
[116]  Comba, A.; Çaltepe, G.; Yüce, Ö.; Erena, E.; Kalaycı, A. G., Effects of age of diagnosis and dietary compliance on growth parameters of patients with celiac disease. Arch Argent Pediatr 2018, 116 (4), 248-255.
[117]  Semba, R. D.; Trehan, I.; Li, X.; Moaddel, R.; Ordiz, M. I.; Maleta, K. M.; Kraemer, K.; Shardell, M.; Ferrucci, L.; Manary, M., Environmental Enteric Dysfunction is Associated with Carnitine Deficiency and Altered Fatty Acid Oxidation. EBioMedicine 2017, 17, 57-66.
[118]  Curione, M.; Danese, C.; Viola, F.; Di Bona, S.; Anastasia, A.; Cugini, P.; Barbato, M., Carnitine deficiency in patients with coeliac disease and idiopathic dilated cardiomyopathy. Nutr Metab Cardiovasc Dis 2005, 15 (4), 279-83.
[119]  Ferretti, G.; Bacchetti, T.; Masciangelo, S.; Saturni, L., Celiac disease, inflammation and oxidative damage: a nutrigenetic approach. Nutrients 2012, 4 (4), 243-57.
[120]  KhalKhal, E.; Rezaei-Tavirani, M.; Razzaghi, M.; Rezaei-Tavirani, S.; Zali, H.; Rostamii-Nejad, M., The critical role of dysregulation of antioxidant activity and carbohydrate metabolism in celiac disease. Gastroenterol Hepatol Bed Bench 2019, 12 (4), 340-347.
[121]  Morais, M. B.; Silva, G., Environmental enteric dysfunction and growth. J Pediatr (Rio J) 2019, 95 Suppl 1, 85-94.
[122]  Upadhyay, D.; Singh, A.; Das, P.; Mehtab, J.; Dattagupta, S.; Ahuja, V.; Makharia, G. K.; Jagannathan, N. R.; Sharma, U., Abnormalities in metabolic pathways in celiac disease investigated by the metabolic profiling of small intestinal mucosa, blood plasma and urine by NMR spectroscopy. NMR Biomed 2020, 33 (8), e4305.
[123]  Uhde, M.; Ajamian, M.; Caio, G.; De Giorgio, R.; Indart, A.; Green, P. H.; Verna, E. C.; Volta, U.; Alaedini, A., Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in the absence of coeliac disease. Gut 2016, 65 (12), 1930-1937.
[124]  McDonald, C. M.; Manji, K. P.; Gosselin, K.; Tran, H.; Liu, E.; Kisenge, R.; Aboud, S.; Fawzi, W. W.; Gewirtz, A. T.; Duggan, C. P., Elevations in serum anti-flagellin and anti-LPS Igs are related to growth faltering in young Tanzanian children. Am J Clin Nutr 2016, 103 (6), 1548-54.
[125]  Syed, S.; Manji, K. P.; McDonald, C. M.; Kisenge, R.; Aboud, S.; Sudfeld, C.; Locks, L.; Liu, E.; Fawzi, W. W.; Duggan, C. P., Biomarkers of Systemic Inflammation and Growth in Early Infancy are Associated with Stunting in Young Tanzanian Children. Nutrients 2018, 10 (9).
[126]  Lauer, J. M.; McDonald, C. M.; Kisenge, R.; Aboud, S.; Fawzi, W. W.; Liu, E.; Tran, H. Q.; Gewirtz, A. T.; Manji, K. P.; Duggan, C. P., Markers of Systemic Inflammation and Environmental Enteric Dysfunction Are Not Reduced by Zinc or Multivitamins in Tanzanian Infants: A Randomized, Placebo- Controlled Trial. J Pediatr 2019, 210, 34-40 e1.
[127]  Harper, K. M.; Mutasa, M.; Prendergast, A. J.; Humphrey, J.; Manges, A. R., Environmental enteric dysfunction pathways and child stunting: A systematic review. PLoS Negl Trop Dis 2018, 12 (1), e0006205.
[128]  Kosek, M. N., Causal Pathways from Enteropathogens to Environmental Enteropathy: Findings from the MAL-ED Birth Cohort Study. EBioMedicine 2017, 18, 109-117.
[129]  Campbell, D. I.; Elia, M.; Lunn, P. G., Growth faltering in rural Gambian infants is associated with impaired small intestinal barrier function, leading to endotoxemia and systemic inflammation. J Nutr 2003, 133 (5), 1332-8.
[130]  De Benedetti, F.; Alonzi, T.; Moretta, A.; Lazzaro, D.; Costa, P.; Poli, V.; Martini, A.; Ciliberto, G.; Fattori, E., Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J Clin Invest 1997, 99 (4), 643-50.
[131]  Prendergast, A. J.; Rukobo, S.; Chasekwa, B.; Mutasa, K.; Ntozini, R.; Mbuya, M. N.; Jones, A.; Moulton, L. H.; Stoltzfus, R. J.; Humphrey, J. H., Stunting is characterized by chronic inflammation in Zimbabwean infants. PLoS One 2014, 9 (2), e86928.
[132]  Farnetti, S.; Zocco, M. A.; Garcovich, M.; Gasbarrini, A.; Capristo, E., Functional and metabolic disorders in celiac disease: new implications for nutritional treatment. J Med Food 2014, 17 (11), 1159-64.
[133]  Sawczenko, A.; Azooz, O.; Paraszczuk, J.; Idestrom, M.; Croft, N. M.; Savage, M. O.; Ballinger, A. B.; Sanderson, I. R., Intestinal inflammation-induced growth retardation acts through IL-6 in rats and depends on the -174 IL-6 G/C polymorphism in children. Proc Natl Acad Sci U S A 2005, 102 (37), 13260-5.
[134]  Galipeau, H. J.; McCarville, J. L.; Huebener, S.; Litwin, O.; Meisel, M.; Jabri, B.; Sanz, Y.; Murray, J. A.; Jordana, M.; Alaedini, A.; Chirdo, F. G.; Verdu, E. F., Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. Am J Pathol 2015, 185 (11), 2969-82.
[135]  Admou, B.; Essaadouni, L.; Krati, K.; Zaher, K.; Sbihi, M.; Chabaa, L.; Belaabidia, B.; Alaoui-Yazidi, A., Atypical celiac disease: from recognizing to managing. Gastroenterol Res Pract 2012, 2012, 637187.
[136]  Balamtekin, N.; Uslu, N.; Baysoy, G.; Usta, Y.; Demir, H.; Saltik-Temizel, I. N.; Ozen, H.; Gürakan, F.; Yüce, A., The presentation of celiac disease in 220 Turkish children. Turk J Pediatr 2010, 52 (3), 239-44.
[137]  Haapalahti, M.; Kulmala, P.; Karttunen, T. J.; Paajanen, L.; Laurila, K.; Mäki, M.; Mykkänen, H.; Kokkonen, J., Nutritional status in adolescents and young adults with screen-detected celiac disease. J Pediatr Gastroenterol Nutr 2005, 40 (5), 566-70.
[138]  Meazza, C.; Pagani, S.; Laarej, K.; Cantoni, F.; Civallero, P.; Boncimino, A.; Bozzola, M., Short stature in children with coeliac disease. Pediatr Endocrinol Rev 2009, 6 (4), 457-63.
[139]  Nurminen, S.; Kivelä, L.; Taavela, J.; Huhtala, H.; Mäki, M.; Kaukinen, K.; Kurppa, K., Factors associated with growth disturbance at celiac disease diagnosis in children: a retrospective cohort study. BMC gastroenterology 2015, 15, 125.
[140]  Ravikumara, M.; Tuthill, D. P.; Jenkins, H. R., The changing clinical presentation of coeliac disease. Arch Dis Child 2006, 91 (12), 969-71.
[141]  Saari, A.; Harju, S.; Mäkitie, O.; Saha, M. T.; Dunkel, L.; Sankilampi, U., Systematic growth monitoring for the early detection of celiac disease in children. JAMA Pediatr 2015, 169 (3), e1525.
[142]  de Punder, K.; Pruimboom, L., The dietary intake of wheat and other cereal grains and their role in inflammation. Nutrients 2013, 5 (3), 771-87.
[143]  Guandalini, S., Celiac Disease. In Essential Pediatric Gastroenterology, Hepatology and Nutrition, Guandalini, S., Ed. McGraw Hill: New York, 2005; pp 221-230.
[144]  Vojdani, A.; O'Bryan, T.; Kellermann, G. H., The immunology of gluten sensitivity beyond the intestinal tract. European Journal of Inflammation 2008, 6 (2), 49-57.
[145]  Cenit, M. C.; Olivares, M.; Codoner-Franch, P.; Sanz, Y., Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution? Nutrients 2015, 7 (8), 6900-23.
[146]  Lerner, A.; Matthias, T., Possible association between celiac disease and bacterial transglutaminase in food processing: a hypothesis. Nutrition reviews 2015, 73 (8), 544-52.
[147]  Wacklin, P.; Laurikka, P.; Lindfors, K.; Collin, P.; Salmi, T.; Lahdeaho, M. L.; Saavalainen, P.; Maki, M.; Matto, J.; Kurppa, K.; Kaukinen, K., Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. The American journal of gastroenterology 2014, 109 (12), 1933-41.
[148]  Di Sabatino, A.; Miceli, E.; Dhaliwal, W.; Biancheri, P.; Salerno, R.; Cantoro, L.; Vanoli, A.; De Vincenzi, M.; Blanco Cdel, V.; MacDonald, T. T.; Corazza, G. R., Distribution, proliferation, and function of Paneth cells in uncomplicated and complicated adult celiac disease. Am J Clin Pathol 2008, 130 (1), 34-42.
[149]  Hollon, J.; Puppa, E. L.; Greenwald, B.; Goldberg, E.; Guerrerio, A.; Fasano, A., Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients 2015, 7 (3), 1565-76.
[150]  Fritscher-Ravens, A.; Schuppan, D.; Ellrichmann, M.; Schoch, S.; Röcken, C.; Brasch, J.; Bethge, J.; Böttner, M.; Klose, J.; Milla, P. J., Confocal endomicroscopy shows food-associated changes in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology 2014, 147 (5), 1012- 20.e4.
[151]  Palova-Jelinkova, L.; Rozkova, D.; Pecharova, B.; Bartova, J.; Sediva, A.; Tlaskalova-Hogenova, H.; Spisek, R.; Tuckova, L., Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J Immunol 2005, 175 (10), 7038-45.
[152]  Fasano, A.; Sapone, A.; Zevallos, V.; Schuppan, D., Nonceliac gluten sensitivity. Gastroenterology 2015, 148 (6), 1195-204.
[153]  Lerner A, Shoenfeld Y, Matthias T. A Review: Gluten ingestion side effects and withdrawal advantages in non-celiac autoimmune diseases. 2017, Nutr Rev. 2017; 75: 1046-1058.
[154]  Vojdani, A.; Vojdani, E.; Kharrazian, D., Fluctuation of zonulin levels in blood vs stability of antibodies. World J Gastroenterol 2017, 23 (31), 5669-5679.
[155]  Lerner, A.; Neidhofer, S.; Matthias, T., Transglutaminase 2 and Anti Transglutaminase 2 Autoantibodies in Celiac Disease and Beyond: Anti-Transglutaminase 2 Autoantibodies: Friends or Enemies. Immunome Res 2015, 11 (2).
[156]  Lerner A, Ramesh A, Matthias T. Are Non-Celiac Autoimmune Diseases Responsive to Gluten-Free Diet? Intrenat J Celiac Dis. 2017;5:164-167.
[157]  Szondy, Z.; Korponay-Szabo, I.; Kiraly, R.; Sarang, Z.; Tsay, G. J., Transglutaminase 2 in human diseases. Biomedicine (Taipei) 2017, 7 (3), 15.
[158]  Lerner A, Neidhöfer S, Matthias T. Transglutaminase 2 and anti transglutaminase 2 autoantibodies in celiac disease and beyond: Part A: TG2 double-edged sword: gut and extraintestinal involvement. Immunome Research, 2015; 11: 3.
[159]  Lerner, A.; Matthias, T., Food Industrial Microbial Transglutaminase in Celiac Disease: Treat or Trick. IJCD 2015, 3 (1), 1-6.
[160]  Wang, Z.; Wilhelmsson, C.; Hyrsl, P.; Loof, T. G.; Dobes, P.; Klupp, M.; Loseva, O.; Mörgelin, M.; Iklé, J.; Cripps, R. M.; Herwald, H.; Theopold, U., Pathogen entrapment by transglutaminase--a conserved early innate immune mechanism. PLoS Pathog 2010, 6 (2), e1000763.
[161]  Nadella, V.; Wang, Z.; Johnson, T. S.; Griffin, M.; Devitt, A., Transglutaminase 2 interacts with syndecan-4 and CD44 at the surface of human macrophages to promote removal of apoptotic cells. Biochim Biophys Acta 2015, 1853 (1), 201-12.
[162]  Szondy, Z.; Sarang, Z.; Molnar, P.; Nemeth, T.; Piacentini, M.; Mastroberardino, P. G.; Falasca, L.; Aeschlimann, D.; Kovacs, J.; Kiss, I.; Szegezdi, E.; Lakos, G.; Rajnavolgyi, E.; Birckbichler, P. J.; Melino, G.; Fesus, L., Transglutaminase 2-/- mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci U S A 2003, 100 (13), 7812-7.
[163]  Tóth, B.; Garabuczi, E.; Sarang, Z.; Vereb, G.; Vámosi, G.; Aeschlimann, D.; Blaskó, B.; Bécsi, B.; Erdõdi, F.; Lacy-Hulbert, A.; Zhang, A.; Falasca, L.; Birge, R. B.; Balajthy, Z.; Melino, G.; Fésüs, L.; Szondy, Z., Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol. 2009, 182 (4), 2084-92.
[164]  Henson, P. M.; Hume, D. A., Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 2006, 27 (5), 244-50.
[165]  Michlewska, S.; McColl, A.; Rossi, A. G.; Megson, I. L.; Dransfield, I., Clearance of dying cells and autoimmunity. Autoimmunity. 2007, 40 (4), 267-73.
[166]  Lerner A, Agmon-Levin N, Shapira Y, Gilburd B, Reuter S, Lavi L, Shoenfeld Y. The thrombophylic network of autoantibodies in celiac disease. BMJ Medicine, 2013, 11; 89-95.
[167]  Turner, J. R., Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol. 2006, 169 (6), 1901-9.
[168]  Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev, 2015; 14: 479-89.
[169]  Mu, Q.; Kirby, J.; Reilly, C. M.; Luo, X. M., Leaky Gut As a Danger Signal for Autoimmune Diseases. Front Immunol. 2017, 8, 598.
[170]  Menard, S.; Cerf-Bensussan, N.; Heyman, M., Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol 2010, 3 (3), 247-59.
[171]  Kuitunen, M.; Savilahti, E., Gut permeability to human alpha-lactalbumin, beta-lactoglobulin, mannitol, and lactulose in celiac disease. J Pediatr Gastroenterol Nutr 1996, 22 (2), 197-204.
[172]  Heyman, M.; Abed, J.; Lebreton, C.; Cerf-Bensussan, N., Intestinal permeability in coeliac disease: insight into mechanisms and relevance to pathogenesis. Gut 2012, 61 (9), 1355-64.
[173]  Fasano, A., Systemic autoimmune disorders in celiac disease. Current opinion in gastroenterology 2006, 22 (6), 674-9.
[174]  Fasano, A.; Shea-Donohue, T., Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nature clinical practice 2005, 2 (9), 416-22.
[175]  Maggiore, G.; Caprai, S., The liver in celiac disease. J Pediatr Gastroenterol Nutr 2003, 37 (2), 117-9.
[176]  Bischoff, S. C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J. D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J. M., Intestinal permeability--a new target for disease prevention and therapy. BMC gastroenterology 2014, 14, 189.
[177]  Viitasalo, L.; Niemi, L.; Ashorn, M.; Ashorn, S.; Braun, J.; Huhtala, H.; Collin, P.; Maki, M.; Kaukinen, K.; Kurppa, K.; Iltanen, S., Early microbial markers of celiac disease. J Clin Gastroenterol 2014, 48 (7), 620-4.
[178]  de Groot, P. G.; Urbanus, R. T., The significance of autoantibodies against beta2-glycoprotein I. Blood 2012, 120 (2), 266-74.
[179]  Jordo, E. D.; Wermeling, F.; Chen, Y.; Karlsson, M. C., Scavenger receptors as regulators of natural antibody responses and B cell activation in autoimmunity. Mol Immunol 2011, 48 (11), 1307-18.
[180]  Kra-Oz, Z.; Lorber, M.; Shoenfeld, Y.; Scharff, Y., Inhibitor(s) of natural anti-cardiolipin autoantibodies. Clinical and experimental immunology 1993, 93 (2), 265-8.
[181]  Merrill, J. T., Do antiphospholipid antibodies develop for a purpose? Curr Rheumatol Rep 2006, 8 (2), 109-13.
[182]  von Landenberg, P.; Doring, Y.; Modrow, S.; Lackner, K. J., Are antiphospholipid antibodies an essential requirement for an effective immune response to infections? Ann N Y Acad Sci 2007, 1108, 578-83.
[183]  Zhou, Z. H.; Zhang, Y.; Hu, Y. F.; Wahl, L. M.; Cisar, J. O.; Notkins, A. L., The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe. 2007, 1 (1), 51-61.
[184]  Marchalonis, J. J.; Adelman, M. K.; Robey, I. F.; Schluter, S. F.; Edmundson, A. B., Exquisite specificity and peptide epitope recognition promiscuity, properties shared by antibodies from sharks to humans. J Mol Recognit. 2001, 14 (2), 110-21.
[185]  Marchalonis, J. J.; Kaveri, S.; Lacroix-Desmazes, S.; Kazatchkine, M. D., Natural recognition repertoire and the evolutionary emergence of the combinatorial immune system. Faseb J. 2002, 16 (8), 842-8.
[186]  Quan, C. P.; Berneman, A.; Pires, R.; Avrameas, S.; Bouvet, J. P., Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans. Infect Immun 1997, 65 (10), 3997-4004.