Frontiers of Astronomy, Astrophysics and Cosmology
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: http://www.sciepub.com/journal/faac Editor-in-chief: Prof. Luigi Maxmilian Caligiuri
Open Access
Journal Browser
Go
Frontiers of Astronomy, Astrophysics and Cosmology. 2015, 1(1), 43-55
DOI: 10.12691/faac-1-1-6
Open AccessReview Article

On the Role of Schwarzschild Interaction in Understanding Strong Interaction and Nuclear Binding Energy

U. V. S. Seshavatharam1, and S. Lakshminarayana2

1Honorary faculty, I-SERVE, Alakapuri, Hyderabad-35, Telangana, India

2Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India

Pub. Date: March 13, 2015

Cite this paper:
U. V. S. Seshavatharam and S. Lakshminarayana. On the Role of Schwarzschild Interaction in Understanding Strong Interaction and Nuclear Binding Energy. Frontiers of Astronomy, Astrophysics and Cosmology. 2015; 1(1):43-55. doi: 10.12691/faac-1-1-6

Abstract

In this paper the authors reviewed the basics of final unification with respect to Schwarzschild interaction and strong interaction. In the earlier published papers the authors suggested that, strength of any interaction can be defined as the ratio of the operating force magnitude and the magnitude of (c4/G) . If strength of the Schwarzschild interaction is assumed to be unity, then weak interaction strength seems to be ‘squared Avogadro number (N2A) ’ times less than the Schwarzschild interaction. ‘Inverse’ of the strong coupling constant can be considered as the “natural logarithm of square root of ratio of gravitational and electromagnetic force ratio of down quark mass where the operating gravitational constant is squared Avogadro number times the gravitational constant. With the earlier proposed two new grand unified back ground numbers and the unified force (c4/N2AG), attempt is made to fit and understand the mystery of Up and Down quarks, strong coupling constant, nuclear stability, nuclear binding energy. It is very strange and very interesting to say that, at the stable mass number, nuclear binding energy is approximately equal to the sum of rest energy of 2Z up quarks and Z(1+as) down quarks where as is the strong coupling constant.

Keywords:
gravitational constant astrophysical force limit avogadro number schwarzschild’s interaction strong interaction SEMF atomic radii final unification

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  P. A. M. Dirac, The cosmological constants. Nature, 139, 323, (1937).
 
[2]  Witten, Edward. Search for a realistic Kaluza-Klein theory. Nuclear Physics B 186 (3): 412-428. (1981).
 
[3]  David Gross, Einstein and the search for Unification. Current science, Vol. 89, No. p 12. (2005).
 
[4]  Abdus Salam. Einstein’s Last Dream: The Space-Time Unification of Fundamental Forces, Physics News, 12 (2): 36, (1981).
 
[5]  Salam A. and Sivaram C. Strong Gravity Approach to QCD and Confinement. Mod. Phys. Lett.,v. A8 (4), 321-326. (1993).
 
[6]  Recami E. Elementary Particles as Micro-Universes, and “Strong Black-holes”: A Bi-Scale Approach to Gravitational and Strong Interactions. Preprint NSF-ITP-02-94. posted in the arXives as the e-print physics/0505149, and references therein.
 
[7]  Dine, Michael. Supersymmetry and String Theory: Beyond the Standard Model. Cambridge University Press. (2007)
 
[8]  Roberto Onofrio. On Weak Interactions as Short-Distance Manifestations of Gravity. Modern Physics Letters A, Vol. 28, No. 7 (2013) 1350022.
 
[9]  U. V. S. Seshavatharam and S. Lakshminarayana. Two Background Unified Numbers & Their Possible Role. Prespace time journal, Vol 5, issue 13, pp 1338-1353. (November 2014).
 
[10]  U. V. S. Seshavatharam and S. Lakshminarayana. On the plausibility of final unification with Avogadro Number. Prespace time journal, Vol 5, issue 10, pp 1028-1041. (2014).
 
[11]  U. V. S. Seshavatharam and S. Lakshminarayana. Nucleus in Strong nuclear gravity. Proceedings of the DAE Symp. On Nucl. Phys. 56: 302, 2011.
 
[12]  U. V. S. Seshavatharam and S. Lakshminarayana, Role of Avogadro number in grand unification. Hadronic Journal. Vol-33, No 5, (2010) October. p 513.
 
[13]  U. V. S. Seshavatharam and S. Lakshminarayana, To confirm the existence of atomic gravitational constant. Hadronic journal, Vol-34, No 4, p 379 (2011).
 
[14]  U. V. S. Seshavatharam and S. Lakshminarayana. Logic Behind the Squared Avogadro Number and SUSY. International Journal of Applied and Natural Sciences. Vol. 2, Issue 2, 23-40 (2013).
 
[15]  U. V. S. Seshavatharam and S. Lakshminarayana. Integral charge SUSY in Strong nuclear gravity. Proceedings of the DAE Symp. on Nucl. Phys. 56 (2011) p. 842.
 
[16]  U. V. S. Seshavatharam and S. Lakshminarayana. Super Symmetry in Strong and Weak interactions. Int. J. Mod. Phys. E, Vol. 19, No. 2, (2010), p. 263-280.
 
[17]  U. V. S. Seshavatharam and S. Lakshminarayana. SUSY and strong nuclear gravity in (120-160) GeV mass range. Hadronic journal, Vol-34, No 3, (2011) June, p. 277-300.
 
[18]  U. V. S. Seshavatharam and S. Lakshminarayana. New concepts and semi empirical fittings in understanding SUSY and the four cosmological interactions. Prespace time journal, Vol 4, issue 11, (December 2013), pp 1027-1038.
 
[19]  Roger Penrose. Chandrasekhar, Black Holes, and Singularities. J. Astrophys. Astr. (1996) 17, 213-231.
 
[20]  Subrahmanyan Chandrasekhar. On Stars, Their Evolution and Their Stability', Nobel Prize lecture, December 8, 1983.
 
[21]  G..J. Stoney, On the Physical Units of Nature. Phil. Mag. 11 (1881) 381-390.
 
[22]  Martin J.T. Milton. A new definition for the mole based on the Avogadro constant: a journey from physics to chemistry. Phil. Trans. R. Soc. A 369, 3993-4003. (2011).
 
[23]  P.J. Mohr, B.N. Taylor, and D.B. Newell. CODATA Recommended Values of the Fundamental Physical Constants: 2010” by in Rev. Mod. Phys. 84, 1527 (2012) http://pdg.lbl.gov/2014/reviews/rpp2014-rev-phys-constants.pdf
 
[24]  K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014).
 
[25]  N. Bohr. On the Constitution of Atoms and Molecules. (Part-1) Philos. Mag. 26, 1913, p 1.
 
[26]  N. Bohr. On the Constitution of Atoms and Molecules. Systems containing only a Single Nucleus. (Part-2) Philos. Mag. 26, 476, (1913).
 
[27]  Geiger H and Marsden E. On a diffuse reaction of the particles. Proc. Roy. Soc., Ser. A 82: 495-500, (1909).
 
[28]  Michael O. Distler et al. The RMS Charge Radius of the Proton and Zemach Moments. Phys. Lett.B. 696: 343-347, (2011).
 
[29]  Roberto Onofrio. Proton radius puzzle and quantum gravity at the Fermi scale. EPL, 104 (2013) 20002.
 
[30]  Chowdhury, P.R. et al. Modified Bethe-Weizsacker mass formula with isotonic shift and new driplines. Mod. Phys. Lett. A20 p. 1605-1618. (2005).
 
[31]  W.D. Myers and W.J. Swiatecki. Table of Nuclear Masses according to the 1994 Thomas-Fermi Model. LBL-36803. (1994).
 
[32]  G. Audi and A.H. Wapstra. The 1993 atomic mass evolution.(I) Atomic mass table. Nuclear physics, A 5 65, p1-65 (1993).
 
[33]  G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli and G. M. Tino1. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518-521. (2014)
 
[34]  L.L. Williams. Analytical Expressions for the Gravitational Constant. (August 2009) http://www.konfluence.org/CalculatingG.pdf
 
[35]  George T Gillies. The Newtonian gravitational constant: recent measurements and related studies. Rep. Prog. Phys. 60 151
 
[36]  J Stuhler et al. MAGIA—using atom interferometry to determine the Newtonian gravitational constant. J. Opt. B: Quantum Semiclass. Opt. 5 (2003) S75-S81.
 
[37]  Terry Quinn, , and . An uncertain big G. Phys. Rev. Lett. 112.068103. (2013)
 
[38]  J. B. Fixler; G. T. Foster; J. M. McGuirk; M. A. Kasevich. , Science 315 (5808): 74-77, (2007).
 
[39]  Brandenburg, J.E., 1992, IEEE Transactions on Plasma Science, v20, n6, p 944. Unification of Gravity and Electromagnetism in the Plasma Universe.
 
[40]  Jun Luo and Zhong-Kun Hu. Status of measurement of the Newtonian gravitational constant G. Class. Quantum Grav. 17 (2000) 2351-2363.
 
[41]  St. Schlamminger et al. Determination of the Gravitational Constant Using a Beam Balance. (July 2002) http://www.schlammi.com/pdf/prl02.pdf
 
[42]  B. Andreas et al. An accurate determination of the Avogadro constant by counting the atoms in a 28Si crystal. Phys. Rev. Let. 106 (3): 030801 (2011).
 
[43]  B P Leonard. On the role of the Avogadro constant in redefining SI units for mass and amount of substance. Metrologia 44, 82-86 (2007).
 
[44]  Dulal C Ghosh, rakha Biswas. Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii. Int. J. Mol. Sci. 3, 87-113. (2002).
 
[45]  Slater, J.C. Quantum Theory of Moleculs and Solids; McGraw-Hill Book: New York; Vol. 2.
 
[46]  J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).
 
[47]  A.V. Manohar and C.T. Sachrajda. Quark masses. Updated Jan 2014. Pages 1-20. (pdg.lbl.gov/2014/reviews/rpp2014-rev-quark-masses.pdf)
 
[48]  Halzen, F.; Martin, A. D. Quarks and Leptons: An Introductory Course in Modern Particle Physics. John Wiley & Sons. (1984).