Frontiers of Astronomy, Astrophysics and Cosmology
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: http://www.sciepub.com/journal/faac Editor-in-chief: Prof. Luigi Maxmilian Caligiuri
Open Access
Journal Browser
Go
Frontiers of Astronomy, Astrophysics and Cosmology. 2015, 1(1), 31-36
DOI: 10.12691/faac-1-1-4
Open AccessArticle

Theory of Everything

Zhiliang Cao1, 2, , Henry Gu Cao3 and Wenan Qiang4

1Wayne State University, 42 W Warren Ave, Detroit

2Shanghai Jiaotong University, Shanghai, China

3Northwestern University, Evanston, IL 60208, USA

4Northwestern University, 303 E Superior, Chicago IL 60611

Pub. Date: February 01, 2015

Cite this paper:
Zhiliang Cao, Henry Gu Cao and Wenan Qiang. Theory of Everything. Frontiers of Astronomy, Astrophysics and Cosmology. 2015; 1(1):31-36. doi: 10.12691/faac-1-1-4

Abstract

A theory of everything (ToE) or final theory, ultimate theory, or master theory is a hypothetical single, all-encompassing, coherent theoretical framework of physics that fully explains and links together all physical aspects of the universe. As Newton, Einstein, and the Standard Model failed to provide such framework, Unified Field Theory (UFT) is the best framework so far. UFT gave Physics a new definition: “A natural science that involves the study of motion of space-time-energy-force to explain and predict the motion, interaction and configuration of matter.” The Torque Grid is the fundamental unit of universe. It is driven from gravity forces as result of space-time-energy-force unification. UFT deduces major Physics theories in no time. UFT unifies four major forces by resonance conditions with help of an arbitrary 3D prime wave model in which the twist/stretch ratio is 137. The resonance condition (distortion equals original size) of the Gravity force decides the size of universe and UFT concludes that the Grand universe is hierarchical. UFT builds foundation of Chemistry and Material Science with the help of predicted octahedron proton topology: proton/neutron pilings form nuclei; octahedron proton and electron interactions create cubic atoms; electron orbit overlapping decides crystal structure; electron and proton Torque and asymmetrical electron collision twist DNA. There are many UFT related papers we previously published. This paper provides main ideas of UFT papers in hopping that scientists can understand UFT better. This paper will further remove the doubts scientists have regarding the merits of the UFT theory as Theory of Everything (ToE), the final theory of the Physics.

Keywords:
nuclear physics theory of everything particle physics astronomy DNA biology

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 14

References:

[1]  Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298.
 
[2]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Configuration of Particles.” International Journal of Physics 1.6 (2013): 151-161.
 
[3]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Hierarchical Universe.” International Journal of Physics 1.6 (2013): 162-170.
 
[4]  Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127.
 
[5]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and Topology of Nuclei.” International Journal of Physics 2, no. 1 (2014): 15-22.
 
[6]  Cao, Zhiliang, and Henry Gu Cao. “Non-Scattering Photon Electron Interaction.” Physics and Materials Chemistry 1, no. 2 (2013): 9-12.
 
[7]  Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109.
 
[8]  Zhiliang Cao, Henry Gu Cao, Wenan Qiang, Unified Field Theory and Topology of Atom, American Journal of Modern Physics. Special Issue: Unified Field Theory: The New Physics. Vol. 4, No. 4, 2015, pp. 1-7.
 
[9]  Cao, Zhiliang, and Henry Gu Cao. “Cubic Atom and Crystal Structures.” International Journal of Physics 2, no. 6 (2014): 277-281.
 
[10]  In fact, there are mathematical issues regarding quantum field theories still under debate (see e.g. Landau pole), but the predictions extracted from the Standard Model by current methods applicable to current experiments are all self-consistent. For a further discussion see e.g. Chapter 25 of R. Mann (2010). An Introduction to Particle Physics and the Standard Model. CRC Press. ISBN 978-1-4200-8298-2.
 
[11]  S.L. Glashow (1961). “Partial-symmetries of weak interactions”. Nuclear Physics 22 (4): 579–588. Bibcode: 1961NucPh..22..579G.
 
[12]  S. Weinberg (1967). “A Model of Leptons”. Physical Review Letters 19 (21): 1264–1266. Bibcode: 1967PhRvL..19.1264W.
 
[13]  A. Salam (1968). N. Svartholm, ed. “Elementary Particle Physics: Relativistic Groups and Analyticity”. Eighth Nobel Symposium. Stockholm: Almquvist and Wiksell. p. 367.
 
[14]  Kabai, Sándor (2007). “Double Helix”. The Wolfram Demonstrations Project.
 
[15]  Alberts et al. (1994). The Molecular Biology of the Cell. New York: Garland Science. ISBN 978-0-8153-4105-5.
 
[16]  “Helical repeat of DNA in solution”. PNAS 76 (1): 200–203. Bibcode: 1979PNAS...76..200W. PMC 382905. PMID 284332.
 
[17]  Pabo C, Sauer R (1984). “Protein-DNA recognition”. Annu Rev Biochem 53: 293–321. PMID 6236744.
 
[18]  James D. Watson and Francis Crick (1953). “A structure for deoxyribose nucleic acid”. Nature 171 (4356): 737–738. Bibcode: 1953Natur.171..737W. PMID 13054692.
 
[19]  Crick F, Watson JD (1954). “The Complementary Structure of Deoxyribonucleic Acid”. Proceedings of the Royal Society of London. 223, Series A: 80–96.
 
[20]  The Structure of the DNA Molecule
 
[21]  Wilkins MHF, Stokes AR, Wilson HR (1953). “Molecular Structure of Deoxypentose Nucleic Acids” (PDF). Nature 171 (4356): 738–740. Bibcode: 1953Natur.171.. 738W.
 
[22]  Cheng Chin, Erich J. Mueller, “Viewpoint: Looking for Hofstadter’s Butterfly in Cold Atoms,” Physics 6, 118 (2013).
 
[23]  D. R. Hofstadter, “Energy Levels and Wave Functions of Bloch Electrons in Rational and Irrational Magnetic Fields,” Phys. Rev. B 14, 2239 (1976).
 
[24]  M. C. Geisler, J. H. Smet, V. Umansky, K. von Klitzing, B. Naundorf, R. Ketzmerick, and H. Schweizer, “Detection of a Landau Band-Coupling-Induced Rearrangement of the Hofstadter Butterfly,” Phys. Rev. Lett. 92, 256801 (2004).
 
[25]  S. Melinte et al., “Laterally Modulated 2D Electron System in the Extreme Quantum Limit,” Phys. Rev. Lett. 92, 036802 (2004).
 
[26]  T. Feil, K. Výborný, L. Smrcka, C. Gerl, and W. Wegscheider, “Vanishing Cyclotron Gaps in a Two-Dimensional Electron System with a Strong Short-Period Modulation,” Phys. Rev. B 75, 075303 (2007).
 
[27]  C. R. Dean et al. “Hofstadter’s Butterfly and the Fractal Quantum Hall Effect in Moire Superlattices,” Nature 497, 598 (2013).
 
[28]  L. A. Ponomarenko et al., “Cloning of Dirac Fermions in Graphene Superlattices,” Nature 497, 594 (2013).
 
[29]  M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, “Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices,” Phys. Rev. Lett. 111, 185301 (2013).
 
[30]  H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, “Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices,” Phys. Rev. Lett. 111, 185302 (2013).
 
[31]  R. E. Peierls, “On the Theory of Diamagnetism of Conduction Electrons,” Z. Phys. 80, 763 (1933).
 
[32]  P. G. Harper, “Single Band Motion of Conduction Electrons in a Uniform Magnetic Field,” Proc. Phys. Soc. A 68, 874 (1955).
 
[33]  D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Phys. Rev. Lett. 49, 405 (1982).
 
[34]  Rogachev, A. and Wei, T.-C. and Pekker, D. and Bollinger, A. and Goldbart, P. and Bezryadin, A., “Magnetic-Field Enhancement of Superconductivity in Ultranarrow Wires,” Phys. Rev. Lett. 97, 13 (2006).
 
[35]  Bezryadin, A.; Lau, C. N.; Tinkham, M. Nature 2000, 404, 971.
 
[36]  Lau, C. N.; Markovic, N.; Bockrath, M.; Bezryadin, A.; Tinkham, M.; Phys. ReV. Lett. 2001, 87, 217003.
 
[37]  Zgirski, M.; Riikonen, K. P.; Touboltsev, V.; Arutyunov, K.; Nano Lett. 2005, 5, 1029.
 
[38]  Tinkham, M. Introduction to SuperconductiVity, 2nd ed.; McGraw-Hill: New York, 1996.
 
[39]  Tian, M. L.; Wang, J. G.; Kurtz, J. S.; Liu, Y.; Chan, M. H. W.; Mayer, T. S.; Mallouk, T. E.; Phys. ReV. B 2005, 71, 104521.
 
[40]  Altomare, F.; Chang, A. M.; Melloch, M. R.; Hong, Y. G.; Tu, C. W.; Phys. ReV. Lett. 2006, 97, 017001.
 
[41]  Xu, K.; Heath, J. R.; Nano Lett. 2008, 8, 136.
 
[42]  Hopkins, D. S.; Pekker, D.; Goldbart, P. M.; Bezryadin, A.; Science 2005, 308, 1762.
 
[43]  Makhlin, Y.; Schon, G.; Shnirman, A.; Nature 1999, 398, 305.
 
[44]  Nakamura, Y.; Pashkin, Y. A.; Tsai, J. S.; Nature 1999, 398, 786.
 
[45]  Mooij, J. E.; Nazarov, Y. V.; Nat. Phys. 2006, 2, 169.