Frontiers of Astronomy, Astrophysics and Cosmology
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: http://www.sciepub.com/journal/faac Editor-in-chief: Prof. Luigi Maxmilian Caligiuri
Open Access
Journal Browser
Go
Frontiers of Astronomy, Astrophysics and Cosmology. 2015, 1(1), 16-23
DOI: 10.12691/faac-1-1-2
Open AccessArticle

Primordial Hot Evolving Black Holes and the Evolved Primordial Cold Black Hole Universe

U. V. S. Seshavatharam1, and S. Lakshminarayana2

1Honorary faculty, I-SERVE, Alakapuri, Hyderabad-35, AP, India

2Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India

Pub. Date: December 30, 2014

Cite this paper:
U. V. S. Seshavatharam and S. Lakshminarayana. Primordial Hot Evolving Black Holes and the Evolved Primordial Cold Black Hole Universe. Frontiers of Astronomy, Astrophysics and Cosmology. 2015; 1(1):16-23. doi: 10.12691/faac-1-1-2

Abstract

In a quantum gravitational approach, from the beginning of cosmic evolution, the authors assumed the existence of hot primordial evolving black holes. During the evolution of primordial black holes, decreasing thermal energy density is supposed to be directly proportional to their decreasing mass-energy density. When mass of the assumed evolving black hole approaches sin-2w) times the Chandrasekhar’s mass limit, density of the evolving black hole seems to approach the order of nuclear mass density. If primordial universe is responsible for generating large number of primordial evolving black holes, then the whole universe can certainly be assumed to be a big primordial evolving black hole. By considering the current universe as an ‘evolved’ primordial black hole of isotropic temperature equal to the 2.725 K, in a quantum gravitational approach its current Hubble constant can be fitted very easily. In reality one may or may not be able to reach a black hole. By considering the whole “observable universe” as a huge primordial evolved black hole, many interesting solutions (including magnetic monopole problem) will come into visualization.

Keywords:
quantum gravity primordial evolving black holes thermal energy density mass-energy density primordial evolving black hole universe quantum gravitational repulsive force cosmic red shift

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Lukasz Andrzej Glinka. Global One-Dimensionality Conjecture within Quantum General Relativity. Gravitation and Cosmology 16 (1), pp. 7-15 (2010).
 
[2]  G. Esposito. An introduction to quantum gravity. http://arxiv.org/abs/1108.3269. (Invited contribution to Section 6.7.17 of the Encyclopedia of Life Support Systems (EOLSS) under the auspices of the UNESCO)
 
[3]  G. Esposito, Quantum Gravity, Quantum Cosmology and Lorentzian Geometries, Springer (1994).
 
[4]  S. Carlip, Quantum Gravity in 2+1 Dimensions, Cambridge University Press (2003).
 
[5]  T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge University Press (2007).
 
[6]  D. J. Gross, T. Piran, and S. Weinberg (eds.), Two Dimensional Quan tum Gravity and Random Surfaces, World Scientific (1992).
 
[7]  L.A. Glinka, Æthereal Multiverse: A New Unifying Theoretical Approach to Cosmology, Particle Physics, and Quantum Gravity, Cam bridge International Science Publishing, Great Abington, UK (2012).
 
[8]  P. Fré, V. Gorini, G. Magli, and U. Moschella, Classical and Quantum Black Holes, Institute of Physics Publishing (1999).
 
[9]  Giddings, S. B. & Thomas, S. D. (2002). High-energy colliders as black hole factories: The End of short distance physics. Phys. Rev. D 65 (5): 056010.
 
[10]  Tony Rothman and Stephen Boughn. Can gravitons be detected? Found.Phys. 36 (2006) 1801-1825.
 
[11]  Lukasz Andrzej Glinka. New approach to quantization of cosmological models. Gravitation and Cosmology, V15, N4, pp. 317-322, 2009
 
[12]  Lukasz Andrzej Glinka, Thermodynamical Quantum Gravity. Applied Mathematics and Physics, vol. 2, no. 3 (2014): 66-72.
 
[13]  B.J.Carr. Physics Lect. Notes Phys. 631, 301-321(2003)
 
[14]  Poplawski, N. J. Class. Quantum Grav. 31, 065005 (2014)
 
[15]  Zhang, Tianxi. Astrophysics and Space Science, Volume 330, Issue 1, pp 157-165. (2010)
 
[16]  U. V. S. Seshavatharam and S. Lakshminarayana, International Journal of Astronomy, Vol. 1 No. 5, pp. 87-100. (2012)
 
[17]  Hawking S.W. arXiv:1401.5761v1 (2014).
 
[18]  Mitra A. Foundations of Physics Letters.13:543-579. (2000)
 
[19]  L. Berg strom. Rept. Prog. Phys. 63: 793, 2000.
 
[20]  D. Stojkovic et al. Phys. Rev. D72 (2005) 045012.
 
[21]  D. Stojkovic and K. Freese. Phys. Lett. B606 (2005) 251-257.
 
[22]  U. V. S. Seshavatharam, and S. Lakshminarayana, Frontiers of Astronomy, Astrophysics and Cosmology, vol. 1, no. 1 (2014): 1-15.
 
[23]  S. Hawking SW. Commun. Math. Phys. 43: 199-220. (1975)
 
[24]  Steven B. Giddings and Scott Thomas. Phys.Rev. D65 056010 (2002).
 
[25]  Belgiorno et al. Phys. Rev. Lett. 105, 203901 (2010).
 
[26]  F. Belgiorno et al. Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 105, 203901
 
[27]  Jeff Steinhauer. Observation of self-amplifying Hawking radiation in an analogue black-hole laser. Nature Physics 10, 864-869 (2014)
 
[28]  S. Chandrasekhar, Philosophical Magazine (7th series) 11 p. 592-596 (1931).
 
[29]  K.A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014) (J. Erler and A. Freitas. Electroweak model and constraints on new physics).
 
[30]  Ashtekar, Abhay Physical Review Letters 57 (18): 2244-2247 (1986).
 
[31]  Carlo Rovelli. Class. Quant. Grav. 28: 114005 (2011).
 
[32]  Quantum cosmology. In Hawking, Stephen W.; Israel, Werner. 300 Years of Gravitation. Cambridge University Press. pp. 631-651. (1987).
 
[33]  Schwarz, John H. 170: 214-226 (2007).
 
[34]  Hawking S.W. A Brief History of Time. Bantam Dell Publishing Group. 1988.
 
[35]  Friedman, A. Über die Möglichkeiteiner Welt mitconstanter negative Krümmung des Raumes. Zeit. Physik. 21: 326-332. (1924).
 
[36]  Hubble E. P, A relation between distance and radial velocity among extra-galactic nebulae, PNAS, 1929, vol. 15, 1929, pp. 168-173.
 
[37]  Sciama, D. W. Modern Cosmology. Cambridge University Press. 1971.
 
[38]  R.A. Alpher, H.A. Bethe, and G. Gamow. The origin of chemical elements. Phys. rev. 73,80,1948.
 
[39]  Hubble, E.P,. PASP, 59, pp 153-167, (1947).
 
[40]  David N. Spergel et al. Planck Data Reconsidered. http://arxiv.org/pdf/1312.3313.pdf
 
[41]  J. V. Narlikar. Introduction to cosmology. Cambridge Univ Press, (2002).
 
[42]  Saul Perlmutter. Nobel lecture. (2011).