American Journal of Environmental Protection
ISSN (Print): 2328-7241 ISSN (Online): 2328-7233 Website: http://www.sciepub.com/journal/env Editor-in-chief: Mohsen Saeedi, Hyo Choi
Open Access
Journal Browser
Go
American Journal of Environmental Protection. 2015, 3(4), 145-150
DOI: 10.12691/env-3-4-5
Open AccessArticle

Characterization of Dissolved Organic Matter in the Waters of Lomé Lagoon System (Togo)

Ayah M.1, , Grybos M.2, Bawa L. M.1, Bril H.2 and Djaneye-Boudjou G.1

1Laboratoire de Chimie des Eaux, Faculté Des Sciences, Université de Lomé, Lomé, Togo

2Groupement de Recherche Eau Sol Environnement, Faculté des Sciences et Techniques, Université de Limoges, Limoges Cedex, France

Pub. Date: June 29, 2015

Cite this paper:
Ayah M., Grybos M., Bawa L. M., Bril H. and Djaneye-Boudjou G.. Characterization of Dissolved Organic Matter in the Waters of Lomé Lagoon System (Togo). American Journal of Environmental Protection. 2015; 3(4):145-150. doi: 10.12691/env-3-4-5

Abstract

The aims of study is to distinguish the different origins of dissolved organic matter and emphasizes the spatial variations of dissolved organic matter quality in Lomé lagoon system composed by three lakes and Equilibrium canal. The results showed that, the three lakes of Lomé are dominated by biological dissolved organic matter (HIX < 4) except the site O11 (HIX = 5.75) with high biological activity (BIX included between 0.8 and 1). This high biological activity could due to the water contribution from north plateau and offshore bar. Apart from O11 and C4 the information brought by the ratio Iγ/Iα shows that the dissolved organic matter of the lagoon is autochthonous and composed by labile organic compounds. Lomé lagoon system is composed in majority by humic substances with a small amount of microbial products.

Keywords:
dissolved organic carbon aromaticity 3D fluorescence fluorescence indexes

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Powe A. M., Flandcher K. A., St Luce N. N., Lowry M., Neal S., Mc Carroll M. (2004). Molecular fluorescence, phosphorescence, and chemiluminescence spectromandry. Anal Chem; 76:4614-34.
 
[2]  Antunes, M. C. G., Esteves da Silva, J. C. G. (2005). Multivariate curve resolution analysis excitation-emission matrices of fluorescence of humic substances. Anal. Chim. Acta 546, 52-59.
 
[3]  Baker A. (2002). Fluorescence properties of some farm wastes: implications for water quality monitoring. Water Res; 36:189-95.
 
[4]  Fu, P. Q., Wu, F. C., Liu, C. Q. (2004). Fluorescence excitation–emission matrix characterization of a commercial humic acid. Chin. J. Geochem. 23: 309-318.
 
[5]  Sierra M. M. D., Giovanela M., Parlanti E., Soriano-Sierra E. J. (2005). Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere; 58:715-33.
 
[6]  Larsson, T., Wedborg, M., Turner, D. (2007). Correction of inner-filter effect in fluorescence excitation–emission matrix spectromandry using Raman scatter. Anal. Chim. Acta; 583: 357-363.
 
[7]  Richard C., Guyot G., Trubandskaya O., Trubandskoj O., Grigatti M., Cavani L. (2009). Fluorescence analysis of humic-like substances extracted from composts: influence of composting time and fractionation. Environ. Chem. Landt.; 7: 61-65.
 
[8]  Coble PG, Green SA, Blough NV, Gagosian RB. (1990). Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature; 348:432-4.
 
[9]  Sierra M. M. D., Donard O. F. X., Andcheber H., Soriano-Sierra E. J., Ewald M. (2001). Fluorescence and DOC contents of porewaters from coastal and deepsea sediments in the Gulf of Biscay. Org Geochem; 32: 1319-28.
 
[10]  Baker A, Curry M. (2004). Fluorescence of leachates from three contrasting landfills. Water Res; 38: 2605-13.
 
[11]  Matthews B. J. H., Jones A. C., Theodorou N. K., Tudhope A. W. (1996). Excitation– emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Mar Chem; 55: 317-32.
 
[12]  Marhaba T. F., Van D., Lippincott R. L. (2000). Rapid identification of dissolved organic matter fractions in water by spectral fluorescent signatures. Water Res; 34: 3543-50.
 
[13]  Parlanti E., Morin B., Vacher L. (2002). Combined 3D-spectrofluorimandry, high performance liquid chromatography and capillary electrophoresis for the characterization of dissolved organic matter in natural waters. Org Geochem; 33: 221-36.
 
[14]  Cannavo P., Dudal Y., Boudenne J. L., Lafolie F. (2004). Potential for fluorescence spectroscopy to assess the quality of the soil waterextracted organic matter. Soil Sci; 169: 688-96.
 
[15]  Mladenov N., Mc Knight D. M., Wolski P., Ramberg L. (2005). Effects of annual flooding on dissolved organic carbon dynamics within a pristine wandland, theOkavango Delta, Botswana. Wandlands; 25:622-38.
 
[16]  Leloup M., Nicolau R., Pallier V., Yépremian C., Feuillade G-C. (2013). Organic matter produced by algae and cyanobacteria: quantitative and qualitative characterization. Journal of Environmental Sciences; 26 (6) 1089-1097.
 
[17]  Katsuyama M., Ohte N. (2002). Dandermining the sources of stormflow from the fluorescence properties of dissolved organic carbon in a forested headwater catchment. J Hydrol; 268:192-202.
 
[18]  Stedmon C. A., Markager S., Bro R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem; 82:239-54.
 
[19]  Alberts J .J., Takacs M. (2004). Total luminescence spectra of IHSS standard and reference fulvic acids, humic acids and natural organic matter: comparison of aquatic and terrestrial source terms. Org Geochem; 35:243-56.
 
[20]  Baker A. (2005). Fluorescence tracing of diffuse landfill leachate contamination in rivers. Water Air Soil Pollut; 163: 229-44.
 
[21]  Mariot M., Dudal Y., Furian S., Sakamoto A., Vallès V., Fort M., Barbiero L. (2007). Dissolved organic matter fluorescence as a water-flow tracer in the tropical wandland of Pantanal of Nhecolândia, Brazil. Science of the Total Environment 388: 184-193
 
[22]  Jiji R. D., Cooper G. A., Booksh K. (1999). Excitation–emission matrix fluorescence based dandermination of carbamate pesticides and polycyclic aromatic hydrocarbons. Anal Chim Acta; 397: 61-72.
 
[23]  Dudal Y, Holgado R, Maestri G, Dupont L, Guillon E. (2006). Rapid screening of DOM's mandal-binding abilitiy using a fluorescence-based microplate assay. Sci Total Environ; 354: 286-91.
 
[24]  Coble PG. (1996). Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Mar Chem; 51:325-46.
 
[25]  Chen, W., Westerhoff, P., Leenheer, J. A., Booksh, K. (2003). Fluorescence excitation– emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol.; 37: 701-5710.
 
[26]  Patel-Sorrentino N. , Mounier S., Benaim J.Y. (2002). Excitation–emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers. Water Research; 36 : 2571-2581.
 
[27]  Zsolnay A., Baigar E., Jimenez M., Steinweg B., Saccomandi F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38, 45-50.
 
[28]  Zsolnay A. (2003). Dissolved organic matter: artefacts, definitions and functions. Geoderma 113 : 187-209
 
[29]  Vacher L. (2004). Andude par fluorescence des propriétés de la la matière organique dissoute dans les systèmes estuariens. Cas des estuaires de la Gironde and de la Seine. Ph.D. Thesis, Université Bordeaux 1.
 
[30]  Kalbitz, K., Schmerwitz, J., Schwesig, D., Matzner, E. (2003a): Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113: 273-291.
 
[31]  Parlanti, E., Worz, K., Geoffroy, L., and Lamotte, M. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry 31, 1765-1781.
 
[32]  Smart P. L., Finlayson B. L., Rylands W. D., Ball C. M. (1976). The relation of fluorescence to dissolved organic carbon in surface waters. Water Res; 10:805-11.
 
[33]  Weishaar J. L., Aiken G. R., Bergamaschi B. A., Fram M. S., Fujij R., Mopper K. (2003). Evaluation of specific ultravioland absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37: 4702-4708.
 
[34]  Labanowski J., Feuillade G. (2011). Dissolved organic matter: Precautions for the study of hydrophilic substances using XAD resin. Water Research, vol. 45, pp. 315-327.
 
[35]  Davranche, M., Dia, A., Fakih, M., Nowack, B., Gruau, G., Ona-nguema, G., Petitjean, P., Martin, S., Hochreutener, R., (2012) Organic matter control on the reactivity of Fe(III)-oxyhydroxides and associated As in wetland soils: A kinetic modeling study a Géosciences. Chemical Geology 335 (2013) 24-35.
 
[36]  Kang K-H., Shin H. S., Park H. (2002). Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Wat. Res.; 36(16): 4023-4032.
 
[37]  Berthe C., Redon E., Feuillade G. (2008). Fractionation of the organic matter contained in leachate resulting from two modes of landfilling: An indicator of waste degradation. Journal of Hazardous Materials, vol. 154, pp. 262-271.
 
[38]  Tcha-Thom M. (2014). Evaluation de l’impact des fractions de matières organiques extraites de lixiviats de déchets ménagers et assimilés sur les caractéristiques des sols agricoles togolais et français. Mémoire de Master 2, Université de Limoges; 36p.
 
[39]  Mounier S., Patel N., Quilici L., Benaim J. Y., Benamou C. (1999). Fluorescence 3D de la matière organique dissoute du fleuve Amazone. Water Res; 33(6):1523-33.