American Journal of Environmental Protection
ISSN (Print): 2328-7241 ISSN (Online): 2328-7233 Website: http://www.sciepub.com/journal/env Editor-in-chief: Mohsen Saeedi, Hyo Choi
Open Access
Journal Browser
Go
American Journal of Environmental Protection. 2015, 3(4), 137-144
DOI: 10.12691/env-3-4-4
Open AccessArticle

Assessment of Farmers’ Perceptions about Soil Fertility with Different Management Practices in Small Holder Farms of Abuhoy Gara Catchemnt, Gidan District, North Wollo

Gebeyaw Tilahun Yeshaneh1,

1Department of Soil and Water Resources Management, Faculty of Agriculture, Research and Development Office, Woldia University, Woldia

Pub. Date: June 16, 2015

Cite this paper:
Gebeyaw Tilahun Yeshaneh. Assessment of Farmers’ Perceptions about Soil Fertility with Different Management Practices in Small Holder Farms of Abuhoy Gara Catchemnt, Gidan District, North Wollo. American Journal of Environmental Protection. 2015; 3(4):137-144. doi: 10.12691/env-3-4-4

Abstract

The study was conducted at the Abuhoy Gara Catchment, which is located in the Gidan District of North Wello Zone in the ANRS in year 2014. The aim of the study was to study farmers’ perceptions about assessment of soil fertility and comparing them with the criteria of soil fertility used by researchers. To address this issue, semi-structured interviews were conducted in 60 households to gain insight into soil fertility management practices, local methods used to assess the fertility status of a field, and perceived trends in soil fertility. Thirty-three farmers were then asked to identify fertile and infertile fields. Characteristics of these fields in terms of the indicators mentioned in the interviews were recorded, and soil samples were taken for physicochemical analysis in a laboratory. The collected data were grouped according to altitude, slope and type of field. A total of six indicators (soil color, texture, soil depth, topography, soil drainage, and distance from home) were found to be used by farmers to evaluate and monitor soil fertility, which were classified into three categories: Crop production, soil fertility and soil degradation). The overall result showed that there was good agreement between farmers’ assessment of the soil fertility status of a field and a number of these indicators, particularly soil color and texture, which were examined in more detail. The soil physicochemical analysis also corresponded well with farmers’ assessment of soil fertility. The soil attributes under improper cultivated land showed an overall change towards the direction of loss of its fertility compared to the condition of the soils under proper management. The manner in which soils are managed has a major impact on soil fertility indicators. In order to bring sustainable change in soil quality, research activities must follow scientific and participatory approaches. Therefore, to design more appropriate research and to facilitate clear communication with farmers, researchers need to recognize farmers’ knowledge, perceptions about assessments of soil fertility. Because, as they included all soil factors affecting plant growth, farmers’ perceptions of soil fertility were found to be more long term day-to- day close practical experience finding than those of researchers.

Keywords:
soil fertility farmers’ perceptions indicators soil color and texture

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Alemneh Dejene, 2003. Integrated natural resources managements to enhance food security: the cases for community- based approaches in Ethiopia. Food and Agricultural Organization (FAO), the United Nations.
 
[2]  Barber, S., 1984. Soil Nutrient Bioavailability: Mechanstic Approach. John Wiley and Sons. Inc., New York, USA. 398p.
 
[3]  Brady, N.C. and R.R. Weil, 2002. The nature and properties of soils, 13th Ed. Prentice- Hall Inc., New Jersey, USA. 960p.
 
[4]  Bremner D. C. and Mulvaney J. M. (1982). Total Nitrogen. In:Methods of Soil Analysis. (A. L. Page, R. H. Miller and D. R. Keaney, eds). Number 9 Part 2, Am. Soc. of Agron.
 
[5]  Corbeels, M., Shiferaw, A., Haile, M., 2000. Farmers’ knowledge of soil fertility and local management strategies in Tigray, Ethiopia. Managing Africa’s Soils 10, ii + 23.
 
[6]  Dasgupta, P. and K.G. Mäler, 1994. Poverty, institutions and the environmental- resource base. World Bank environment paper 9, Washington, DC.
 
[7]  FAO (Food and Agriculture Organization), 2006. Plant nutrition for food security: A guide for integrated nutrient management. FAO, Fertilizer and Plant Nutrition Bulletin 16, Rome, Italy.
 
[8]  Hugo, L.P., Johann, B., Juergen, G., Hiremagalur, G., Mohammad, J., Victor, M., John, M., Martin, O., and Mohamed, S., 2002. Linking Natural Resources, Agriculture and Human Health: Case Studies from East Africa. LEISA Magazine supplement, page 17-20.
 
[9]  Gee, G.W. and J.W. Bauder, 1986. Particle Size Analysis. In: Methods of Soil Analysis, Part A. Klute (ed.). 2 Ed., Vol. 9 nd. Am. Soc. Agron., Madison, WI, pp: 383-411.
 
[10]  Jones, J.B., 2003. Agronomic Handbook: Management of Crops, Soils, and Their Fertility. CRC Press LLC, Boca Raton, Florida, USA. 482p.
 
[11]  Kuo, S., 1996. Phosphorus. In: Method of Soil Analysis. Part 3.Chemical Methods, Sparks, D.L., A.L. Page, P.A. Helmke, R.H. Leoppert and P.N. Soltanpour et al. (Eds.), Soil Science Society America, Inc. and America Soc. Agronomy, Inc., Wisconsin, ISBN-10: 0891188258, pp: 869-919.
 
[12]  Landon, J.R. (Ed.), 1991. Booker tropical soil manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics. Longman Scientific and Technical, Essex, New York. 474p.
 
[13]  McLean, E.O., 1982. Soil pH and lime requirement. In: Methods of soil analysis, Part 2. (Edited by A.L. Page, R.H. Miller and D.R. Keeney). American Society of Agronomy, Madison, Wisc, pp: 199-224.
 
[14]  Murage, E.W., Karanja, N.K., Smithson, P.C., Woomer, P.L., 2000. Diagnostic indicators of soil quality in productive and non-productive smallholders’ fields of Kenya’s Central Highlands. Agric. Ecosyst. Environ. 79, 1-8.
 
[15]  Murphy, H.F., 1968. A report on fertility status and other data on some soils of Ethiopia. Collage of Agriculture HSIU. Experimental Station Bulletin No. 44, Collage of Agriculture, Alemaya, Ethiopia: 551p.
 
[16]  Nelson, D.W. and L.E. Sommers, 1982. Total carbon, organic carbon and organic matter: In: A.L. Page, R.H. Miller and D.R. Keeney) Methods of soil analysis. Part 2 Chemical and Microbiological Properties, pp: 539-579.
 
[17]  Okalebo, J.R., K.W. Gathua and P.L. Woomer, 1993. Laboratory methods of soil and plant analysis: A working manual - KARI - UNESCO - ROSTA, pp: 88.
 
[18]  Pawluk, R.R., Sandor, J.A., Tabor, J.A., 1992. The role of indigenous soil knowledge in agricultural development. J. Soil Water Conserv. 47, 298-302.
 
[19]  Rhoades, J.D., 1982. Cation exchange capacity. In: Methods of soil analysis. Part 2. Chemical and Microbiological Properties (A.L. Page, R.H. Miller and D.R. Keeney), (Eds.) American Society of Agronomy, Inc. Soil Science Society of America. Inc. Madison, Wisconsin, pp: 149-157.
 
[20]  Ryan, J., G. Estefan, and A. Rashid, 2001. Soil and plant analysis lab manual. 2nd ed. International Center for Agricultural Research in the Dryland Areas (ICARDA), Aleppo, Syria. National Agricultural Research Center, Islamabad, Pakistan.
 
[21]  Saggar, S., K.R. Tate, C.W. Feltham, C.W. Childs and A. Parshotam, 1994. Carbon turnover in a range of allophonic soils amended with 14C-labelled glucose. Soil Biology and Biochemistry. 26: 1263-1271.
 
[22]  Saggar, S., A. Parshotam, G.P. Sparling, C.W. Feltham and P.B.S. Hart, 1996. 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biology and Biochemistry. 28: 1677-1686.
 
[23]  Shrestha, B., Maskey, S.L., Shrestha, R.K., Tripathi, B.P., Khadka, Y.G., Munankarmi, R.C., Bhattari, E.M., Shrestha, S.P., 2000. Soil fertility management: farmers’ practices and perception in the hills of Nepal. Lumle Technical Paper No. 2000/4. Lumle Agriculture Research Station, Pokhara, Nepal.
 
[24]  Sumner, M.E. and B.A. Stewart, 1992. Soil Crusting: Chemical and Physical Processes. 1st Edn., Lewis Publishers, Boca Raton, ISBN-10: 0873718690, pp: 372.
 
[25]  Tekalign Tadese. 1991. Soil, plant, water, fertilizer, animal manure and compost analysis. Working Document No. 13. International Livestock Research Center for Africa, Addis Ababa, Ethiopia.
 
[26]  World Bank, 2008. Sustainable Land Management Project, Project Appraisal Document(PAD), Ethiopia/Report No 42927-ET, Project I.D P107139, http://www-wds.worldbank.org/external/projects/.