American Journal of Environmental Protection
ISSN (Print): 2328-7241 ISSN (Online): 2328-7233 Website: http://www.sciepub.com/journal/env Editor-in-chief: Mohsen Saeedi, Hyo Choi
Open Access
Journal Browser
Go
American Journal of Environmental Protection. 2022, 10(1), 8-21
DOI: 10.12691/env-10-1-2
Open AccessArticle

Spatio-temporal Analysis of Surface and Root Zone Soil Moisture Derived from SMAP and SMOS Microwave Satellite Data Using in-situ Measurements in Senegal

Omar Marigo1, 2, , Gayane Faye1, Manuela Grippa3, Thierry Pellarin4, Modou Mbaye1, Dome Tine1, 5, Eric Mougin3, Fama Mbengue1, 2, Aissata Thiam1 and Balla Diop Ngom2

1Laboratoire de Télédétection Appliquée (LTA), Institut des Sciences de la Terre (IST), Université Cheikh Anta DIOP (UCAD) of Dakar, Senegal

2Department of Physic, Faculty of Science and Technology, Université Cheikh Anta DIOP (UCAD) of Dakar, Senegal

3Géosciences Environnement Toulouse (Université de Toulouse III, CNRS, IRD, CNES), France

4Université de Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble F-38000, France

5Department of Geography, Université Cheikh Anta DIOP (UCAD) of Dakar- Senegal

Pub. Date: March 23, 2022

Cite this paper:
Omar Marigo, Gayane Faye, Manuela Grippa, Thierry Pellarin, Modou Mbaye, Dome Tine, Eric Mougin, Fama Mbengue, Aissata Thiam and Balla Diop Ngom. Spatio-temporal Analysis of Surface and Root Zone Soil Moisture Derived from SMAP and SMOS Microwave Satellite Data Using in-situ Measurements in Senegal. American Journal of Environmental Protection. 2022; 10(1):8-21. doi: 10.12691/env-10-1-2

Abstract

Soil moisture plays a regulating role on Earth-Atmosphere flux and the water balance at the terrestrial surface. In recent years, significant progress has been made in quantifying soil moisture from satellite data. Particularly, microwave space remote sensing remains an efficient tool for estimating soil moisture at a large scale. However, the validation by in situ measurements is still needed in some areas such as the Sahel, especially for elaborated products such as soil moisture in the root zone. The present study is contributing to the validation of soil moisture products in the silvopastoral and agricultural system within the Sahelian area in Senegal. Soil moisture products derived from Soil Moisture Active and Passive (SMAP) sensors at 9 and 36 km and Soil Moisture Ocean Salinity (SMOS) at the resolution of 0.25° x 0.25° are compared with in-situ measurements acquired at different depths (from 0 to 100 cm) three validation sites. First, a validation of the in-situ measurements was done to visualize the performance of these sensors in situ for soil moisture recovery on the three study sites (Loumbi, Bawdi, and Niakhar). Second, an estimation of the SMAP, SMOS products of the surface area (5 cm depth) was made. Third, an estimation showed that these microwave sensors follow the soil moisture dynamics whatever the surface and climatic conditions and also despite RMSE higher or equal to the specifications, 0.04 m3/m3. Finally, the results from the soil moisture analysis of the root zone of the satellite and in-situ products are very important.

Keywords:
validation soil moisture SMAP SMOS microwave remote sensing Senegal

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 11

References:

[1]  I. Barry, ‘Estimation de l’humidité du sol en milieu agricole par combinaison des données polarimétriques radar en bande C et des micro-ondes passives en bande L’, PhD Thesis, Université de Sherbrooke, 2021.
 
[2]  S. I. Seneviratne et al., ‘Investigating soil moisture–climate interactions in a changing climate: A review’, Earth-Science Reviews, vol. 99, no. 3-4, pp. 125-161, 2010.
 
[3]  R. D. Koster et al., ‘GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview’, Journal of Hydrometeorology, vol. 7, no. 4, pp. 590-610, Aug. 2006.
 
[4]  C. M. Taylor, ‘Detecting soil moisture impacts on convective initiation in Europe’, Geophysical Research Letters, vol. 42, no. 11, pp. 4631-4638, 2015.
 
[5]  C. M. Taylor et al., ‘Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns’, Nature Geoscience, vol. 4, no. 7, pp. 430-433, 2011.
 
[6]  D. R. Legates et al., ‘Soil moisture: A central and unifying theme in physical geography’, Progress in Physical Geography: Earth and Environment, vol. 35, no. 1, pp. 65-86, Feb. 2011.
 
[7]  W. T. Crow, F. Chen, R. H. Reichle, and Q. Liu, ‘L band microwave remote sensing and land data assimilation improve the representation of prestorm soil moisture conditions for hydrologic forecasting’, Geophysical Research Letters, vol. 44, no. 11, pp. 5495–5503, 2017.
 
[8]  W. T. Crow et al., ‘Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products’, Reviews of Geophysics, vol. 50, no. 2, 2012.
 
[9]  F. Anctil, C. Michel, C. Perrin, and V. Andréassian, ‘A soil moisture index as an auxiliary ANN input for stream flow forecasting’, Journal of Hydrology, vol. 286, no. 1, pp. 155-167, Jan. 2004.
 
[10]  W. Wagner et al., ‘The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications’, Meteorologische Zeitschrift, pp. 5-33, Feb. 2013.
 
[11]  W. Wagner et al., ‘Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR)’, Sensors, vol. 8, no. 2, Art. no. 2, Feb. 2008.
 
[12]  G. Bloschl, ‘Wagner, W., J. Komma, G. Bloschl et al. (2013) The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift, 22, 5-33.
 
[13]  Y. H. Kerr, ‘Soil moisture from space: Where are we?’, Hydrogeol J, vol. 15, no. 1, pp. 117–120, Feb. 2007.
 
[14]  Y. H. Kerr et al., ‘The SMOS Soil Moisture Retrieval Algorithm’, IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 5, pp. 1384-1403, May 2012.
 
[15]  F. Baup, E. Mougin, P. de Rosnay, F. Timouk, and I. Chênerie, ‘Surface soil moisture estimation over the AMMA Sahelian site in Mali using ENVISAT/ASAR data’, Remote Sensing of Environment, vol. 109, no. 4, pp. 473-481, Aug. 2007.
 
[16]  S. Louvet et al., ‘SMOS soil moisture product evaluation over West-Africa from local to regional scale’, Remote Sensing of Environment, vol. 156, pp. 383-394, Jan. 2015.
 
[17]  N. Djamai, R. Magagi, K. Goita, O. Merlin, Y. Kerr, and A. Walker, ‘Disaggregation of SMOS soil moisture over the Canadian Prairies’, Remote Sensing of Environment, vol. 170, pp. 255-268, Dec. 2015.
 
[18]  B. W. Barrett, E. Dwyer, and P. Whelan, ‘Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques’, Remote Sensing, vol. 1, no. 3, Art. no. 3, Sep. 2009.
 
[19]  G. P. Petropoulos, P. K. Srivastava, M. Piles, and S. Pearson, ‘Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management’, Sustainability, vol. 10, no. 1, Art. no. 1, Jan. 2018.
 
[20]  L. Bai, X. Lv, and X. Li, ‘Evaluation of Two SMAP Soil Moisture Retrievals Using Modeled- and Ground-Based Measurements’, Remote Sensing, vol. 11, no. 24, Art. no. 24, Jan. 2019.
 
[21]  K. C. Kornelsen and P. Coulibaly, ‘Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications’, Journal of Hydrology, vol. 476, pp. 460-489, Jan. 2013.
 
[22]  P. de Rosnay et al., ‘Multi-scale soil moisture measurements at the Gourma meso-scale site in Mali’, Journal of Hydrology, vol. 375, no. 1, pp. 241-252, Aug. 2009.
 
[23]  E. G. Njoku, T. J. Jackson, V. Lakshmi, T. K. Chan, and S. V. Nghiem, ‘Soil moisture retrieval from AMSR-E’, IEEE transactions on Geoscience and remote sensing, vol. 41, no. 2, pp. 215-229, 2003.
 
[24]  C. S. Draper, J. P. Walker, P. J. Steinle, R. A. De Jeu, and T. R. Holmes, ‘An evaluation of AMSR–E derived soil moisture over Australia’, Remote Sensing of Environment, vol. 113, no. 4, pp. 703-710, 2009.
 
[25]  T. Pellarin, S. Louvet, C. Gruhier, G. Quantin, and C. Legout, ‘A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements’, Remote Sensing of Environment, vol. 136, pp. 28-36, Sep. 2013.
 
[26]  R. Bindlish, T. J. Jackson, A. J. Gasiewski, M. Klein, and E. G. Njoku, ‘Soil moisture mapping and AMSR-E validation using the PSR in SMEX02’, Remote Sensing of Environment, vol. 103, no. 2, pp. 127-139, Jul. 2006.
 
[27]  A. Balenzano et al., ‘On the use of temporal series of L-and X-band SAR data for soil moisture retrieval. Capitanata plain case study’, European Journal of Remote Sensing, vol. 46, no. 1, pp. 721-737, Jan. 2013.
 
[28]  M. El Hajj et al., ‘Soil moisture retrieval over irrigated grassland using X-band SAR data’, Remote Sensing of Environment, vol. 176, pp. 202-218, Apr. 2016.
 
[29]  R. D. Koster, Y. Chang, H. Wang, and S. D. Schubert, ‘Impacts of Local Soil Moisture Anomalies on the Atmospheric Circulation and on Remote Surface Meteorological Fields during Boreal Summer: A Comprehensive Analysis over North America’, Journal of Climate, vol. 29, no. 20, pp. 7345-7364, Oct. 2016.
 
[30]  M. Zribi, ‘Développement de nouvelles méthodes de modélisation de la rugosité pour la rétrodiffusion hyperfréquence de la surface du sol’, PhD Thesis, Toulouse 3, 2030.
 
[31]  M. Owe, R. de Jeu, and T. Holmes, ‘Multisensor historical climatology of satellite-derived global land surface moisture’, Journal of Geophysical Research: Earth Surface, vol. 113, no. F1, 2008.
 
[32]  M. Owe, R. de Jeu, and J. Walker, ‘A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index’, IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 8, pp. 1643-1654, Aug. 2001.
 
[33]  Y. H. Kerr et al., ‘The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle’, Proceedings of the IEEE, vol. 98, no. 5, pp. 666-687, May 2010.
 
[34]  G. J. M. De Lannoy et al., ‘Converting Between SMOS and SMAP Level-1 Brightness Temperature Observations Over Nonfrozen Land’, IEEE Geosci. Remote Sensing Lett., vol. 12, no. 9, pp. 1908-1912, Sep. 2015.
 
[35]  D. Entekhabi et al., ‘The Soil Moisture Active Passive (SMAP) Mission’, Proceedings of the IEEE, vol. 98, no. 5, pp. 704-716, May 2010.
 
[36]  J. R. Piepmeier et al., ‘SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit’, IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 4, pp. 1954-1966, Apr. 2017.
 
[37]  L. Brocca, F. Melone, T. Moramarco, W. Wagner, and S. Hasenauer, ‘ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy’, Remote Sensing of Environment, vol. 114, no. 11, pp. 2745-2755, Nov. 2010.
 
[38]  I. E. Mladenova et al., ‘Remote monitoring of soil moisture using passive microwave-based techniques — Theoretical basis and overview of selected algorithms for AMSR-E’, Remote Sensing of Environment, vol. 144, pp. 197-213, Mar. 2014.
 
[39]  R. M. Parinussa, T. R. H. Holmes, N. Wanders, W. A. Dorigo, and R. A. M. de Jeu, ‘A Preliminary Study toward Consistent Soil Moisture from AMSR2’, Journal of Hydrometeorology, vol. 16, no. 2, pp. 932-947, Apr. 2015.
 
[40]  D. P. Dee et al., ‘The ERA-Interim reanalysis: configuration and performance of the data assimilation system’, Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 656, pp. 553-597, 2011.
 
[41]  R. Gelaro et al., ‘The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)’, J. Climate, vol. 30, no. 14, pp. 5419-5454, Jul. 2017.
 
[42]  S. Saha et al., ‘The NCEP Climate Forecast System Reanalysis’, Bulletin of the American Meteorological Society, vol. 91, pp. 1015-1057, Aug. 2010.
 
[43]  P. De Rosnay, M. Drusch, D. Vasiljevic, G. Balsamo, C. Albergel, and L. Isaksen, ‘A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF’, Quarterly Journal of the Royal Meteorological Society, vol. 139, no. 674, pp. 1199-1213, 2013.
 
[44]  C. Albergel et al., ‘Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations’, Remote Sensing of Environment, vol. 118, pp. 215-226, Mar. 2012.
 
[45]  G. Faye et al., ‘Soil moisture estimation in Ferlo region (Senegal) using radar (ENVISAT/ASAR) and optical (SPOT/VEGETATION) data’, The Egyptian Journal of Remote Sensing and Space Science, vol. 21, pp. S13–S22, Jul. 2018.
 
[46]  G. Faye, P. Louis Frison, S. Wade, J. Ndione, A. Chedikh Beye, and J. P. Rudant, ‘ÉTUDE DE LA SAISONNALITÉ DES MESURES DES DIFFUSIOMÈTRES SCAT : APPORT AU SUIVI DE LA VÉGÉTATION AU SAHEL, CAS DU FERLO AU SÉNÉGAL’, Teledetection, vol. 10, no. 1, pp. 23-31, Sep. 2011.
 
[47]  J.-A. Ndione, J.-P. Lacaux, Y. Tourre, C. Vignolles, D. Fontanaz, and M. Lafaye, ‘Mares temporaires et risques sanitaires au Ferlo : contribution de la télédétection pour l’étude de la fièvre de la vallée du Rift entre août 2003 et janvier 2004’, Science et Changements Planetaires - Secheresse, vol. 20, Jan. 2009.
 
[48]  S. Cissé, L. Eymard, C. Ottlé, J. A. Ndione, A. T. Gaye, and F. Pinsard, ‘Rainfall Intra-Seasonal Variability and Vegetation Growth in the Ferlo Basin (Senegal)’, Remote Sensing, vol. 8, no. 1, Art. no. 1, Jan. 2016.
 
[49]  J.-A. Ndione, J.-P. Lacaux, Y. Tourre, C. Vignolles, D. Fontanaz, and M. Lafaye, ‘Mares temporaires et risques sanitaires au Ferlo : contribution de la télédétection pour l’étude de la fièvre de la vallée du Rift entre août 2003 et janvier 2004’, Sécheresse, vol. 20, no. 1, pp. 153-160, Jan. 2009.
 
[50]  G. Kargas and P. Kerkides, ‘Water content determination in mineral and organic porous media by ML2 theta probe’, Irrigation and Drainage, vol. 57, no. 4, pp. 435-449, 2008.
 
[51]  J.-P. Wigneron et al., ‘Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms’, Remote Sensing of Environment, vol. 192, pp. 238-262, Apr. 2017.
 
[52]  S. K. Chan et al., ‘Development and assessment of the SMAP enhanced passive soil moisture product’, Remote Sensing of Environment, vol. 204, pp. 931-941, Jan. 2018.
 
[53]  A. J. Purdy et al., ‘SMAP soil moisture improves global evapotranspiration’, Remote Sensing of Environment, vol. 219, pp. 1-14, Dec. 2018.
 
[54]  D. Entekhabi et al., ‘SMAP Handbook–Soil Moisture Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space’, Jan. 2014, Accessed: Feb. 24, 2021. [Online]. Available: https://lirias.kuleuven.be/1741023.
 
[55]  ONeill, Peggy E., Chan, Steven, Njoku, Eni G., Jackson, Tom, Bindlish, Rajat, and Chaubell, M. Julian, ‘SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 7’. NASA National Snow and Ice Data Center DAAC, 2020.
 
[56]  J. D. Bolten and W. T. Crow, ‘Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture’, Geophysical Research Letters, vol. 39, no. 19, 2012.
 
[57]  ONeill, Peggy E., Chan, Steven, Njoku, Eni G., Jackson, Tom, and Bindlish, Rajat, ‘SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 6’. NASA National Snow and Ice Data Center DAAC, 2019.
 
[58]  R. H. Reichle et al., ‘Global Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using Assimilation Diagnostics’, Journal of Hydrometeorology, vol. 18, no. 12, pp. 3217-3237, Dec. 2017.
 
[59]  R. H. Reichle et al., ‘Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements’, Journal of Hydrometeorology, vol. 18, no. 10, pp. 2621-2645, Oct. 2017.
 
[60]  S. Swain, B. D. Wardlow, S. Narumalani, D. C. Rundquist, and M. J. Hayes, ‘Relationships between vegetation indices and root zone soil moisture under maize and soybean canopies in the US Corn Belt: a comparative study using a close-range sensing approach’, International Journal of Remote Sensing, vol. 34, no. 8, pp. 2814-2828, Apr. 2013.
 
[61]  A. Al Bitar et al., ‘Evaluation of SMOS Soil Moisture Products Over Continental U.S. Using the SCAN/SNO℡ Network’, IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 5, pp. 1572-1586, May 2012.
 
[62]  Y. H. Kerr et al., ‘The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle’, Proceedings of the IEEE, vol. 98, no. 5, pp. 666-687, May 2010.
 
[63]  T. J. Jackson et al., ‘Validation of Soil Moisture and Ocean Salinity (SMOS) Soil Moisture Over Watershed Networks in the U.S.’, IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 5, pp. 1530-1543, May 2012.
 
[64]  O. Merlin, C. Rudiger, A. A. Bitar, P. Richaume, J. P. Walker, and Y. H. Kerr, ‘Disaggregation of SMOS Soil Moisture in Southeastern Australia’, IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 5, pp. 1556-1571, May 2012.
 
[65]  O. Merlin, Y. Malbéteau, Y. Notfi, S. Bacon, S. Khabba, and L. Jarlan, ‘Performance Metrics for Soil Moisture Downscaling Methods: Application to DISPATCH Data in Central Morocco’, Remote Sensing, vol. 7, no. 4, pp. 3783-3807, Mar. 2015.
 
[66]  A. A. Bitar, Y. Kerr, O. Merlin, F. Cabot, and J.-P. Wigneron, ‘Root zone soil moisture and drought index from SMOS’, p. 2.
 
[67]  C. Funk et al., ‘The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes’, Sci Data, vol. 2, no. 1, p. 150066, Dec. 2015.
 
[68]  T. Dinku et al., ‘Validation of the CHIRPS satellite rainfall estimates over eastern Africa’, Quarterly Journal of the Royal Meteorological Society, vol. 144, no. S1, pp. 292-312, 2018.
 
[69]  C. Funk et al., ‘The collaborative historical African rainfall model: description and evaluation’, International Journal of Climatology, vol. 23, no. 1, pp. 47-66, 2003.
 
[70]  C. Albergel et al., ‘A first assessment of the SMOS data in southwestern France using in situ and airborne soil moisture estimates: The CAROLS airborne campaign’, Remote Sensing of Environment, vol. 115, no. 10, pp. 2718-2728, Oct. 2011.
 
[71]  T. J. Jackson et al., ‘Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products’, IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 12, pp. 4256-4272, Dec. 2010.
 
[72]  T. J. Jackson et al., ‘Validation of Soil Moisture and Ocean Salinity (SMOS) Soil Moisture Over Watershed Networks in the U.S.’, IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 5, pp. 1530-1543, May 2012.
 
[73]  F. Lei, W. T. Crow, H. Shen, R. M. Parinussa, and T. R. H. Holmes, ‘The Impact of Local Acquisition Time on the Accuracy of Microwave Surface Soil Moisture Retrievals over the Contiguous United States’, Remote Sensing, vol. 7, no. 10, Art. no. 10, Oct. 2015.
 
[74]  A. Al-Yaari et al., ‘Evaluating soil moisture retrievals from ESA’s SMOS and NASA’s SMAP brightness temperature datasets’, Remote Sensing of Environment, vol. 193, pp. 257-273, May 2017.
 
[75]  X. Li et al., ‘Compared performances of SMOS-IC soil moisture and vegetation optical depth retrievals based on Tau-Omega and Two-Stream microwave emission models’, Remote Sensing of Environment, vol. 236, p. 111502, Jan. 2020.
 
[76]  C. Gruhier and G. Quantin, ‘SMOS soil moisture product evaluation over West-Africa from local to regional scale’, Remote Sensing of Environment, Accessed: Jul. 07, 2021. [Online]. Available: https://www.academia.edu/ 23265522/SMOS_soil_moisture_product_evaluation_over_West_Africa_from_local_to_regional_scale.
 
[77]  Z. Liu, P. Li, and J. Yang, ‘Soil Moisture Retrieval and Spatiotemporal Pattern Analysis Using Sentinel-1 Data of Dahra, Senegal’, Remote Sensing, vol. 9, no. 11, Art. no. 11, Nov. 2017.
 
[78]  C. Gruhier et al., ‘Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site’, Hydrology and Earth System Sciences, vol. 14, no. 1, pp. 141-156, 2010.
 
[79]  F. Baup et al., ‘Mapping surface soil moisture over the Gourma mesoscale site (Mali) by using ENVISAT ASAR data’, Hydrology and Earth System Sciences, vol. 15, no. 2, pp. 603-616, Feb. 2011.
 
[80]  H. Vereecken et al., ‘On the spatio-temporal dynamics of soil moisture at the field scale’, Journal of Hydrology, vol. 516, pp. 76-96, Aug. 2014.