American Journal of Environmental Protection
ISSN (Print): 2328-7241 ISSN (Online): 2328-7233 Website: Editor-in-chief: Mohsen Saeedi, Hyo Choi
Open Access
Journal Browser
American Journal of Environmental Protection. 2019, 7(1), 24-33
DOI: 10.12691/env-7-1-5
Open AccessArticle

Effect of Metal Cations Pb2+, Cu2+, Zn2+, Mg2+ and Fe2+ on Some Physiological Parameters of Lichen Parmotrema dilatatum

Yacouba Zoungranan1, Ekou Lynda1, , Ekou Tchirioua1 and Dadié Gabriel Bieri1

1Department of Chemistry, University of Nangui Abrogoua (LTPCM), 02 BP 801 Abidjan 02, Ivory Cost

Pub. Date: June 06, 2019

Cite this paper:
Yacouba Zoungranan, Ekou Lynda, Ekou Tchirioua and Dadié Gabriel Bieri. Effect of Metal Cations Pb2+, Cu2+, Zn2+, Mg2+ and Fe2+ on Some Physiological Parameters of Lichen Parmotrema dilatatum. American Journal of Environmental Protection. 2019; 7(1):24-33. doi: 10.12691/env-7-1-5


Lichens are used in air quality biomonitoring. They accumulate the air pollutants including trace metal elements. However, the bioaccumulation of trace metal elements in the thalli of lichens has considerable consequences on their physiology. Indeed, trace metal elements have the ability to induce the production of reactive oxygen species (ROS) which react with several vital biomolecules of the species. This causes serious morphological, metabolic and physiological abnormalities depending on the lichen species. In this study, fresh thalli of Parmotrema dilatatum lichen are in contact with a metal salt solution at different concentrations. The content of chlorophyll a, phospholipids, total polyphenols and total proteins were determined before and after treatment with the different metal salt solutions. The chlorophyll a content decreases significantly in the presence of copper and zinc ions while carotenoids degrade significantly in the presence of zinc. Significant degradation of the species' membrane in the presence of Iron and Copper was also observed. These observations suggest the possibility of electrolyte leakage in case of a biomonitoring situation on fixed sites, which are potentially rich in copper and iron. Also lichen Parmotrema dilatatum present a great capacity of metal cations detoxification by using proteins in particular in case of lead and copper. A non-protein detoxification response was observed with the carotenoids in presence of zinc.

lichens atmospheric pollution Parmotrema dilatatum bioaccumulation metal trace elements

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Zambrano, A. and Nash T. H, “Lichen responses to short-term transplantation in Desierto de los Leones, Mexico City,” Environ. Pollut., 107 (3), 407-412, 2000.
[2]  Garty, J., Weissman, L.; Cohen, Y.; Karnieli, A. and Orlovsky, L,“Transplanted Lichens in and around the Mount Carmel National Park and the Haifa Bay Industrial Region in Israel: Physiological and Chemical Responses” Environ. Res., 85 (2), 159-176, 2001.
[3]  Dayan, F. E, “Chemestry of the lichen Hypogymnia physodes transplanted to an industrial region,” J. Chem. Ecol., 31 (12), 2975-2991, 2005.
[4]  Sardella, G., Loppi, S.; Paoli, L.; Pisani, T. and Guttova, A, “Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: Relationship with the lichen diversity,” Ecotoxicol. Environ. Saf., 74, 650-657, 2011.
[5]  Sujetoviene, G. and Sliumpaite I, “Response of Evernia prunastri transplanted to an urban area in central Lithuania,” Atmos. Pollut. Res., 4 (2), 222-228, 2013.
[6]  Meyer, C., Diaz-de-Quijano, M.; Monna, F.; Franchi, M.; Toussaint, M.-L.; Gilbert, D. and Bernard, N, “Characterisation and distribution of deposited trace elements transported over long and intermediate distances in north-eastern France using Sphagnum peatlands as a sentinel ecosystem,” Atmos. Environ., 101, 286-293, 2015.
[7]  Bačkor, M. and Loppi S, “Interactions of lichens with heavy metals,” Biologia Plantarum, 53 (2), 214-222, 2009.
[8]  Rzepka, M.A. and Cuny D, “Biosurveillance végétale et fongique des ETM atmosphériques,” Air Pur, 75, 66-79, 2008.
[9]  Rausch, D. T., Galsomiès L. and Martinet Y, Pollution atmosphérique par les métaux en France: dix ans de biosurveillance des retombées.EDP Sciences, Les Ulis, 2013.
[10]  Sujetovienė, G, “Copper induced physiological changes and oxidative damage in lichen Ramalina farinacea,” Biologija, (60) (4), 196-201, 2014.
[11]  Piovár, J., Weidinger, M.; Bačkor, M.; Bačkorová, M. and Lichtscheidl, I, “Short-term influence of Cu, Zn, Ni and Cd excess on metabolism, ultrastructure and distribution of elements in lichen Xanthoria parietina (L.) Th. Fr.,” Ecotoxicol. Environ. Saf., 145, 408-419, 2017.
[12]  Piqueras, A., Olmas, E.; Martinez-Solano, J. R. and Hellin, E, “Cd induced oxidative burst in tobacco BY2 cells: time course, subcellular location and antioxidant response. In Lin, R; ed. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.),” Chemosphere, 69, 89-98, 1999.
[13]  Radetski, C. M., Ferrari, B.; Cotelle, S.; Masfaraud, J. F. and Ferrard, J. F, “Evaluation of the genotoxic, mutagenic and oxidant stress potentials of municipal solid waste in cinerator bottom ash leachates,” Sci. Total Env., 333, 209-216, 2004.
[14]  Carreras, H. A. and Pignata M. L, “Effects of the heavy metals Cu2+, Ni2+, Pb2+, and Zn2+ on some physiological parameters of the lichen Usnea amblyoclada,” Ecotoxicol. Environ. Saf., (67), 59-66, 2007.
[15]  Munzi, S., Pisani T. and Loppi S, “The integrity of lichen cell membrane as a suitable parameter for monitoring biological effects of acute nitrogen pollution,” Ecotoxicol. Environ. Saf., 72, (7), 2009-2012, 2009.
[16]  Pisani, T., Munzi, S.; Paoli, L.; Bačkor, M. and Loppi, S, “Physiological effects of a geothermal element: Boron excess in the epiphytic lichen Xanthoria parietina (L.) TH. FR.,” Chemosphere, vol. 76 (7), 921-926, 2009.
[17]  Munzi, S., Paoli, L.; Fiorini, E. and Loppi, S, “Physiological response of the epiphytic lichen Evernia prunastri (L.) Ach. to ecologically relevant nitrogen concentrations,” Environ. Pollut., 171, 25-29, 2012.
[18]  Stentiford, E. I. and Millner P. A, “The effect of hea v y metals accumulation on the chlorophyll concentration of Typha latifolia plants , growing in a substrate containing sewage sludge compost and watered with metaliferus water,” 20, 65-74, 2003.
[19]  Sen, G., Eryilmaz I. E. and Ozakca D, “The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina,” Phytochemistry, 98, 54-59, 2014.
[20]  Paoli, L. and Loppi S, “A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy,” Environ. Pollut., 155,( 2), 383-388, 2008.
[21]  Paolia, L., Munzib, S.; Guttovác, A.; Senkoc, D.; Sardellad, G. and Loppia, S, “Lichens as suitable indicators of the biological effects of atmospheric pollutants around a municipal solid waste incinerator (S Italy),” Ecol. Indic., 52, 362-370, 2015.
[22]  Porra, R. J, “The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b,” Photosynthesis Research, 73 (1-3), 149-156, 2002.
[23]  Heath, R. L. and Packer L, “Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation,” Arch. Biochem. Biophys., 125, 189-198, 1968.
[24]  Kwon, T. W., Menzel D. B. and Olcott J, “Reactivity of malondialdehyde with food constituents,” J. Food Sci., 30, 808-813, 1965.
[25]  Swain, T. and Hillis W. E, “The phenolic constituents of Prunus domestica. I. The aunatitative analysis of phenolic constituent,” J. Sci. Food Agrico., 10, 418-425, 1959.
[26]  Bradford, M. M, “A rapide and sensitive method for the quantitation of microgram quantities of protein utilizing the pdncipfe of protein-dye binding,” Anal. Biochem., 72, 248-254, 1976.
[27]  Wannaz, E. D., Carreras, H. A.; Abril, G. A. and Pignata, M. L, “Maximum values of Ni2+ , Cu2+ , Pb2+ and Zn2+ in the biomonitor Tillandsia capillaris ( Bromeliaceae ): Relationship with cell membrane damage,” Environ. Exp. Bot., 74, 296-301, 2011.
[28]  Al-Homaidan, A. A., Al-Houri, H. J.; Al-Hazzani, A. A.; Elgaaly, G. and Moubayed, N. M. S, “Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass,” Arab. J. Chem., 7 (1), 57-62, 2014.
[29]  Yruela, I, “Copper in plants,” Brazilian J. Plant Physiol., (17) (1), 145-156, 2005.
[30]  Bačkor, M. and Fahselt D, “Physiological attributes of the lichen Cladonia pleurota in heavy metal-rich and control sites near Sudbury (Ont., Canada),” Environ. Exp. Bot., 52,( 2), 149-159, 2004.
[31]  Bačkor, M., Klejdus, B.; Vantová, I. and Kováčik, J, “Physiological adaptations in the lichens Peltigera rufescens and Cladina arbuscula var. mitis, and the moss Racomitrium lanuginosum to copper-rich substrate,” Chemosphere, 76 (10), 1340-1343, 2009.
[32]  Bačkor, M., Péli E. R., Vantová I, “Copper tolerance in the macrolichens Cladonia furcata and Cladina arbuscula subsp. mitis is constitutive rather than inducible,” Chemosphere, 85 (1), 106-113, 2011.
[33]  Nakajima, H., Hara, K.; Yamamoto, Y. and Itoh, K, “Effects of Cu on the content of chlorophylls and secondary metabolites in the Cu-hyperaccumulator lichen Stereocaulon japonicum,” Ecotoxicol. Environ. Saf., 113, 477-482, 2015.
[34]  Folly, P, “Catabolisme de la chlorophylle b: structures, mécanismes et synthèses,” Université de Fribourg (Suisse) Catabolisme, 2000.
[35]  Branquinho, C., Brown, D. H.; Mfiguas, C. and Catarino, F, “Lead (Pb) uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species,” 37, 95-105, 1997.
[36]  Vardi, N., Parlakpinar, H.; Cetin, A.; Erdogan, A. and Cetin Ozturk, I, “Protective Effect of β-Carotene on Methotrexate-Induced Oxidative Liver Damage,” Toxicol. Pathol., 38 (4), 592-597, 2010.
[37]  Marques A. P., Freitas, M. C.; Wolterbeek, H. T.; Steinebach, O. M. and Verburg, T. “Cell membrane damage and element leaching in transplanted Parmelia sulcata lichen related to ambient SO2 , temperature, and precipitation,” Environ. Sci. Technol., 39, 2624-2630, 2005.
[38]  Pisani, T., Munzi, S.; Paoli, L.; Bačkor, M.; Kováčik, J.; Piovár, J. and Loppi, S, “Physiological effects of mercury in the lichens Cladonia arbuscula subsp. mitis (Sandst.) Ruoss and Peltigera rufescens (Weiss) Humb.,” Chemosphere, 82 (7),1030-103, 2011.
[39]  Favier, A, “Le stress oxydant: Intérêt conceptuel et expérimental dans la compréhension des mécanismes des maladies et potentiel thérapeutique,” L’actualité Chim., 17, 501-512, 2003.
[40]  Sakihama, Y., Cohen, M. F.; Grace, S. C. and Yamasaki, H, “Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants,” Toxicology, 177 (1), 67-80, 2002.
[41]  Liu, Y. G., Fan, T.; Zeng, G. M.; Li, X.; Tong, Q.; Ye, F.; Zhou, M.; Xu, W. H.; Huang, Y. E. “Removal of cadmium and zinc ions from aqueous solution by living Aspergillus niger,” Trans. Nonferrous Met. Soc. China (English Ed.), 16, (3), 681-686, 2006.
[42]  Bouziane, M, “Etude physico-chimique de l’accumulation de métaux lourds par les lichens. Impacts sur les voies de biosynthèse et interprétation du mécanisme de tolérance chez Diploschistes muscorum,” Université des Sciences et Technologies de Lille, 2006.
[43]  Lombardi, L. and Sebastiani L, “Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants,” Plant Sci., 168, 797-802, 2004.
[44]  Yruela, I, “Copper in plants: acquisition, transport and interactions,” Funct. Plant Biol., 36 (5), p. 409, 2009.
[45]  Gupta, S. K., Rai, A. K.; Kanwar, S. S.; Sharma, T. R. and Jones, D, “Comparative Analysis of Zinc Finger Proteins Involved in Plant Disease Resistance,” PLoS One, 7 (8), 1-15, 2012.
[46]  Mishra, S. and Dubey R. S, “Heavy metal toxicity induced alterations in photosynthetic metabolism in plants,” in Handbook of Photosynthesis, 2nd ed., M. Pessarakli, Ed. New York, USA: Taylor & Francis, 2005, 845-863.
[47]  Ribera-Fonseca, A., Inostroza-Blancheteau, C.; Cartes, P.; Rengel, Z.; Mora, M. L, “Early induction of Fe-SOD gene expression is involved in tolerance to Mn toxicity in perennial ryegrass,” Plant Physiol. Biochem.,73, 77-82, 2013.
[48]  Zelko, I. N., Mariani T. J., Folz R. J, “Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression,” Free Radic. Biol. Med., 33 (3), 337-349, 2002.
[49]  Abreu, I. A. and Cabelli D. E, “Superoxide dismutases - a review of the metal-associated mechanistic variations,” 2009.
[50]  Miriyala, S., Holley A. K., St Clair D. K, “Mitochondrial superoxide dismutase, signals of distinction,” Anticancer. Agents Med. Chem., 11 (2), 181-90, 2011.
[51]  Qiu, R. L., Zhao, X.; Tang, Y.-T.; Yu, F.-M.; Hu, P. J, “Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F.,” Chemosphere, 74 (1), 6-12, 2008.
[52]  Cobbett, C. S, “Phytochelatins and Their Roles in Heavy Metal Detoxification,” Plant Physiol., 123, (3), 825-832, 2000.
[53]  Patra, J., Baisakhi, B.; Mohapatro, M. K.; Panda, B. B. “Aluminium triggers genotoxic adaptation to methyl mercuric chloride and ethyl methane sulfonate, but not to maleic hydrazide in plant cells in vivo.,” Mutat. Res., 465 (1-2), 1-9, 2000.
[54]  Emamverdian, A., Ding, Y.; Mokhberdoran, F.; Xie, Y, “Heavy Metal Stress and Some Mechanisms of Plant Defense Response,” Scientific World Journal, 2015 (1-18), 2015.