American Journal of Educational Research
ISSN (Print): 2327-6126 ISSN (Online): 2327-6150 Website: Editor-in-chief: Ratko Pavlović
Open Access
Journal Browser
American Journal of Educational Research. 2021, 9(5), 278-285
DOI: 10.12691/education-9-5-5
Open AccessArticle

Use of Digital Technology in Teaching. Analysis of Results Using Basic Descriptive Statistics and Categorical Principal Components

Carmen Loreto-Gómez1, and Lilia Fernández-Sánchez1

1Department of Basic Sciences, Autonomous Metropolitan University, faculty Azcapotzalco, Mexico

Pub. Date: May 13, 2021

Cite this paper:
Carmen Loreto-Gómez and Lilia Fernández-Sánchez. Use of Digital Technology in Teaching. Analysis of Results Using Basic Descriptive Statistics and Categorical Principal Components. American Journal of Educational Research. 2021; 9(5):278-285. doi: 10.12691/education-9-5-5


A descriptive-quantitative study was conducted to compare two methods of analysis. A quantitative-descriptive research was carried out on the perception of digital technology as a support tool in teaching. A standardized questionnaire was applied to identify the following dimensions of technology use: frequency, benefits, infrastructure, and perception of institutional policies. The analysis was carried out with arithmetic means and with categorical principal component analysis (PCA). The results in both methods indicate that teachers who conduct research use digital technology the most, while experimental teachers use it the least. The PCA method is more robust and allows to obtain the reliability of the results obtained, its use is recommended on the basic statistical analysis to increase the validity of the results.

education research digital technology principal component analysis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Svensson, E. Ordinal invariant measures for individual and group changes in ordered categorical data. Statistics in medicine, 17 (24), 2923-2936. Dec.1998.
[2]  Likert, R. A technique for the measurement of attitudes. Archives of psychology. 1932.
[3]  Burns, A. and Burns, R. Basic marketing research 2th (Ed.). New Jersey: Pearson Ed. 2008.
[4]  Jackson, J. E. A user's guide to principal components (Vol. 587). John Wiley & Sons. 2005.
[5]  Murray, J. Likert data: what to use, parametric or non-parametric? International Journal of Business and Social Science, 4(11). Sep.2013.
[6]  Stevens, S. S. On the theory of scales of measurement. Science, New Series, 103(2684), 677-680. Jun.1946.
[7]  Jamieson, S. Likert scales: How to (ab) use them? Medical education, 38(12), 1217-1218. Dec.2004.
[8]  Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Advances in health sciences education, 15(5), 625-632. Feb.2010.
[9]  Perdices, M. Some Thoughts about the Suitability of the Reliable Change Index (RCI) for Analysis of Ordinal Scale Data. Brain Impairment, 15(3). Dec.2014.
[10]  Allen, I. E., & Seaman, C. A. Likert scales and data analyses. Quality progress, 40(7), 64-65. Juy.2007.
[11]  Cuadras Avellana, C. M. Nuevos métodos de análisis multivariante. Barcelona: CMC Editions; 2012.
[12]  Jolliffe, I. T. Choosing a subset of principal components or variables. Principal component analysis, 111-149. 2002. [E-book] Available: Springer Series in Statistics. Springer, New York, NY.
[13]  Navarro Céspedes, J. M., Casas Cardoso, G. M., & González Rodríguez, E. Principal Component and Regression Analysis for Categorical Data. Application to Arterial Hypertension. Revista de Matemática: Teoría y Aplicaciones 17(2). Juy.2010.
[14]  Díaz, M. C., Rosillo, V. M. L., & de León, O. G. P. Percepción de los docentes de la utilización de las Tecnologías de la Información y la Comunicación. Revista Iberoamericana de Educación, (53/6). Sep-2010 [Online] Available:].
[15]  Fernández-Sánchez, L., & Loreto-Gómez, C. E. Validation of an instrument to measure the perception of teacher-researchers in the use of digital technology. Avances en Ciencias e Ingeniería, 11 (4), 157-169. Oct/Dec.2020. [online] Avaliable:
[16]  Karamizadeh, S. Abdullah, S. Manaf, A. Zamani M. & A. Hooman, A. An Overview of Principal Component Analysis, Journal of Signal and Information Processing, 4 (3B), 173-175. Aug.2013.