Chemical Engineering and Science
ISSN (Print): 2328-7381 ISSN (Online): 2328-7373 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Chemical Engineering and Science. 2013, 1(3), 32-40
DOI: 10.12691/ces-1-3-1
Open AccessArticle

Joint Synthesis of Small Carbon Molecules (C3-C11), Quasi-Fullerenes (C40, C48, C52) and their Hydrides

Alexey Kharlamov1, Ganna Kharlamova2, Marina Bondarenko1, and Veniamin Fomenko1

1Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. Kiev, Ukraine

2Taras Shevchenko National University of Kiev, Volodymyrs'ka St. Kiev, Ukraine

Pub. Date: June 08, 2013

Cite this paper:
Alexey Kharlamov, Ganna Kharlamova, Marina Bondarenko and Veniamin Fomenko. Joint Synthesis of Small Carbon Molecules (C3-C11), Quasi-Fullerenes (C40, C48, C52) and their Hydrides. Chemical Engineering and Science. 2013; 1(3):32-40. doi: 10.12691/ces-1-3-1


Earlier small carbon molecules C2- C13 as cations and аnions in hot carbon plasma and flame gases were detected only. From large amount of quasi-fullerenes (C20 < n < 60) revealed in mass spectra of carbon vapor only C20 and C36 were synthesized. Therefore problem of creation of new methods for synthesis of carbon molecules is considered extremely important. By us new reactionary conditions of pyrolysis of hydrocarbons, in particular benzene is developed. A main distinctive feature of this pyrolysis is opportunity of separate localization of condensed products and soot. Mass spectra of toluene and ethanol solutions of obtained products contain intensive peaks with m/z values appropriate anions of small molecules (C3 – C20), them hydrides (C5H2, C10Н4, C14H4, C16H8, C18Н2) and cations of molecules (C6, C7, C15, C17). For the first time in products of pyrolysis quasi-fullerenes C40, C48, C52, C54, C56 and C58 are found out. Thus, small carbon molecules and quasi-fullerenes in reactionary conditions excluding carbon evaporation can be formed.

small carbon molecules quasi-fullerenes hydrides synthesis pyrolysis benzene

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 8


[1]  Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E., “C60: Buckminsterfullerene,” Nature, 318. 162-163. Nov.1985.
[2]  Kratschmer, W., Lamb, L.D., Fostiropoulos, K. and Huffman, D.R., “Solid C60: a new form of carbon,” Nature, 347. 354-358. Sep.1990.
[3]  Kroto, H.W., “C60. Fullerenes, giant fullerenes and soot,” Pure and Applied Chemistry, 62. 407-415. 1990.
[4]  Rohlfing, C., and Kaldor, J., “Production and characterization of supersonic carbon cluster beams,” Chemical Physics, 81. 3322-3330. Oct.1984.
[5]  Prinzbach, H., Weiler, A., Landenberger, P., Wahl, F., Worth, J., Scott, L., Gelmont, M., Olevano, D. and Issendorff, B., "Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20,” Nature, 407. 60-63. Sep.2000.
[6]  Kietzmann, H., Rochow, R., Ganteför, G., and Eberhardt, W., “Electronic structure of small fullerenes: evidence for the high stability of C32,” Physical Review Letters, 81. 5378-5381. Dec.1998.
[7]  Kroto, H.W., “The stability of the fullerenes Cn (n = 24, 28, 32, 50, 60 and 70),” Nature, 329. 529-531. 1987.
[8]  Guo T., Diener, M.D., Chai, Y., Alford, M.J., Haufler, R.E., McClure, S.M., Ohno, T., Weaver, J.H., Scuseria, G.E. and Smalley R.E., “Uranium stabilization of С28: a tetravalent fullerene,” Science, 257. 1661-1664. Sep.1992.
[9]  Xie, S.Y., Gao, F., Lu, X., Huang, R.B., Wang, C.R., Zhang, X., Liu, M.L., Deng, S.L. and Zheng, L.S., “Capturing the labile fullerene [50] as C50Cl10,” Science, 304. 699-699. Apr.2004.
[10]  Piskoti, C., Yarger, J. and Zettl, A., “A new carbon solid, C36,” Nature, 393. 771-774. Jun.1998.
[11]  Koshio, A., Inakuma, M., Sugai, T. and Shinohara, H., “A preparative scale synthesis of C36 by high temperature laser vaporization: Purification and identification of C36H6 and C36H6O,” Journal of the American Chemical Society, 122. 398-399. Jan.2000.
[12]  Cataldo, F., “Cyanopolyynes: carbon chains formation in a carbon arc mimicking the formation of carbon chains in the circumstellar medium,” International Journal of Astrobiology, 3. 237-246. Jul.2004.
[13]  Weltner, W.Jr., Walsh, P.N. and Angell, C.L., “Spectroscopy of carbon vapor condensed in rare-gas matrices at 4° and 20°K. I.,” Journal of Chemical Physics, 40. 1299-1305. Sep.1964.
[14]  Maier, J.P., “Electronic spectroscopy of carbon chains,” Chemical Society Reviews, 26. 21-28. May.1997.
[15]  Wakabayashi, T. and Krätschmer, W., in Polyynes Synthesis, Properties, and Applications, Cataldo, F., Ed., Taylor, New York, USA, Chap. 1, 2006, 1-15.
[16]  Presilla-Márquez, J.D., Sheehy, J.A., Mills, J.D., Carrick, P.G. and Larson, C.W., “Vibrational spectra of cyclic C6 in solid argon,” Chemical Physics Letters, 274. 439-444. Aug.1997.
[17]  Cermak, I., Förderer, M., Kalhofer, S., Stopka–Ebeler, H. and Krätschmer, W., “Laser–induced emission spectroscopy of matrix–isolated carbon molecules: experimental setup and new results on C3,” Journal of Chemical Physics, 108. 10129-10142. Jun.1998.
[18]  Cataldo, F., “Simple generation and detection of polyynes in an arc discharge between graphite electrodes submerged in various solvents,” Carbon, 41. 2653-2689. Jan.2003.
[19]  Zavitsanos, P.D. and Carlson, G.A., “Experimental study of the sublimation of graphite at high temperatures,” Journal of Chemical Physics, 59. 2966-2973. Sep.1973.
[20]  Heath, J.R., Zhang, Q., O'Brien, S.C., Curl, R.F., Kroto, H.W. and Smalley, R.E., “The formation of long carbon chain molecules during laser vaporization of graphite,” Journal of the American Chemical Society, 109. 359-363. Jan.1987.
[21]  Howard, J.B., McKinnon, J.T., Makarovsky, Y., Lafleur, A.L. and Johnson, M.E., “Fullerenes C60 and C70 in flames,” Nature, 352. 139-141. Jul.1991.
[22]  Taylor, R., Langley, G.J., Kroto, H.W. and Walton, D.R.M., “Formation of C60 by pyrolysis of naphthalene,” Nature, 366. 728-731. Dec.1993.
[23]  Crowley, C.J., Taylor, R., Kroto, H.W., Walton, D.R.M., Cheng, P.C. and Scott, L.T., “Pyrolytic production of fullerenes,” Synthetic Metals, 77. 17-22. Feb.1996.
[24]  Osterodt, J., Zett, A. and Vögtle, F., “Fullerenes by pyrolysis of hydrocarbons and synthesis of isomeric methanofullerenes,” Tetrahedron, 52. 4949-4962. Jun.1996.
[25]  Jenkins, G.M., Holland, L.R., Maleki, H. and Fisher, J., “Continuous production of fullerenes by pyrolysis of acetylene at a glassy carbon surface,” Carbon, 36. 1725-1727. Apr.1998.
[26]  Conley, N.R. and Lagowski, J.J., “On an improved pyrolytic synthesis of [60]- and [70]-fullerene,” Carbon, 40. 949-953. May.2002.
[27]  Kharlamov, A.I., Loythenko, S.V., Кirillova, N.V., Kaverina, S.V. and Fomenko, V.V., “Toroidal nanostructures of carbon. Single-walled 4-, 5-and 6 hedrons and nanorings,” Reports of the National Academy of Sciences of Ukraine, 1. 95-100. 2004.
[28]  Kharlamov, A.I., Ushkalov, L.N., Кirillova, N.V., Fomenko, V.V. and Gubareny, N.I., “Synthesis of onion nanostructures of carbon at pyrolysis of aromatic hydrocarbons,” Reports of the National Academy of Sciences of Ukraine, 3. 97-103. 2006.
[29]  Kharlamova, G., Kharlamov, A., Kirillova, N. and Skripnichenko, A., Functionalized Nanoscale Materials, Devices, and Systems, A. Vaseashta, I. Mihailescu, Springer, Dordrecht, Netherlands, 2008, 373-379.
[30]  Kharlamov, A.I. and Kirillova, N.V., “Fullerenes and hydrides of fullerenes as products transformation (polycondensation) of molecules of aromatic hydrocarbons,” Reports of the National Academy of Sciences of Ukraine, 5. 110-118. 2009.
[31]  Brown, R.F.C., Pyrolytic Methods in Organic Chemistry: Application of Flow and Flash Vacuum Pyrolytic Techniques, Academic Press, New York, USA, 1980, 1-347.
[32]  Plater, M.J., Praveen, M. and Schmidt, D.M., “Buckybowlsynthesis: A novel application of flash vacuum pyrolysis,” Fullerene Science and Technology, 5. 781-800. Jun.1997.
[33]  Kharlamov, A., Kharlamova, G., Khyzhun O. and Kirillova, N., Carbon Nanomaterials in Clean – Energy Hydrogen Systems, Zaginaichenko, S., Schur, D., Skorokhod, V., Eds., Springer, Dordrecht, Netherlands, 2011, 257-268.
[34]  Kharlamov, O., Kharlamova, G., Kirillova, N., Khyzhun, O. and Trachevskii, V., in Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism, A. Vaseashta, E. Braman, P. Susmann, Eds., Springer, Dordrecht, Netherlands, 2012, 245-253.
[35]  Kharlamov, А.I., Bondarenko, M.E. and Kirillova, N.V., “New method for synthesis of fullerenes and fullerene hydrides from benzene,” Russian Journal of Applied Chemistry, 85. 233-239. 2012.
[36]  Whetten, R.L., Alvarez, M.M., Anz, S.J., Schriver, K.E., Beck, R. D., Diederich, F., Rubin, Y., Ettl, R., Foote, C.S., Darmanyan, A.P. and Arbogast, J.W., “Spectroscopic and photophysical properties of the soluble Cn molecules, n = 60, 70, 76/78, 84” Materials Research Society Symposium Proceedings, 206. 639-650. 1991.
[37]  Jones, R.O., “Density functional study of carbon clusters C2n 2< n<16. I. Structure and bonding in the neutral clusters,” Journal of Chemical Physics, 110. 5189-5200. Dec.1999.
[38]  Yang, S., Taylor, K.J., Craycraft, M.J., Conceicao, J., Pettiette, C.L., Cheshnovsky, O. and Smalley R. E., “UPS of 2-30-atom carbon clusters: chains and rings,” Chemical Physics Letters, 144. 431-436. May.1988.
[39]  Cataldo, F. “Synthesis of polyynes in a submerged electric arc in organic solvents,” Carbon, 42. 129-142. Oct.2004.
[40]  Beynon, J.H., Mass Spectrometry and Its Applications to Organic Chemistry, Elsevier, New York, USA, 1960, 1-640.