Biomedical Science and Engineering
ISSN (Print): 2373-1257 ISSN (Online): 2373-1265 Website: http://www.sciepub.com/journal/bse Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Biomedical Science and Engineering. 2017, 5(2), 9-13
DOI: 10.12691/bse-5-2-1
Open AccessArticle

Does Temperature Effects the Growth of the Microcracks in a Broken Femur with Intramedullary Nailing ΤGN?

Mary Tsili1, and D. Zacharopoulos1

1Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece

Pub. Date: July 14, 2017

Cite this paper:
Mary Tsili and D. Zacharopoulos. Does Temperature Effects the Growth of the Microcracks in a Broken Femur with Intramedullary Nailing ΤGN?. Biomedical Science and Engineering. 2017; 5(2):9-13. doi: 10.12691/bse-5-2-1

Abstract

In present paper we considered a broken femur with an intramedullary nailing TGN. We were interested locally for three particular points of fracture area of bone. We based upon theory of adaptive elasticity (accounting and neglecting temperature) and upon energy density theory and showed that after a long time femur at points of our interest: i) will be (quickly or normally or delayed) united or ii) will be not united. Our results are verified by clinical studies. Thus we concluded that temperature does not effects the growth of microcracks.

Keywords:
broken femur intramedullary nailing TGN locally at three points theory of adaptive elasticity density strain energy theory

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 2

References:

[1]  Cowin S. and Hegedus D. (1976). “Bone remodeling I: Theory of adaptive elasticity”, J. Elastic. 6, pp. 313-326.
 
[2]  Hegedus D. and Cowin S. (1976). “Bone remodeling II: Theory of adaptive elasticity”, J. Elastic. 6, pp. 337-352.
 
[3]  Sih G.C (1972 - 1982), “Mechanics of fracture, Introductory chapters”, Vol. I- VII, edited by G.C. Sih, Martinus Nijhoff, The Hague.
 
[4]  Sih G.C. (1985). “Mechanics and Physics of energy density theory”, Theoret., Appl., Fract., Mech., 44, pp. 157-173.
 
[5]  Sih GC (1988). “Thermomechanics of solids: nonequili-brium and irreversibility”, Theoretical and Applied Fracture Mechanics, 99, pp. 175-198.
 
[6]  Papasimos S. (2005). Phd Thesis. University of Patras, Greece. Also in: KATAΓΜΑ/69.pdf (in Greek), p.120.
 
[7]  Muller ME, Nazarian S, Koch P, Schatzker J (eds) (1990). “The comprehensive classification of fractures of long bones. Springer, Berlin, Heidelberg, New York, p. 120.
 
[8]  Frost H.M (1964). “Dynamics of bone remodeling in bone biodynamics” (edited by Frost H.M) Little and Brown 316, Boston.
 
[9]  Wolff. J. (1884). “Das gesetz der transformation der inneren architecture knocken bei pathologism veranderungen der aussen knochenform”. Sitz Ber. Preuss Acad. d. Wiss 22, Sitz Physik-Math. K1.
 
[10]  Wolff J. (1892). “Das gesetz der transformation knocken hirschald”, Berlin.
 
[11]  Cowin S. and Van - Burskirk W. (1978). “Internal bone remodeling induced by a medullary pin”, J. Biomech. 11, pp. 269-275.
 
[12]  Tsili M. (2000). “Theoretical solutions for internal bone remodeling of diaphyseal shafts using adaptive elasticity theory” J. Biomech. 33 pp. 235-239.
 
[13]  Wiss DA, Brien WW, Stetson WB (1990). “Interlocked nailing for treatment of segmental fractures of the femur”. J. Bone Joint Surg. Am., 72(5): 724-728.
 
[14]  Lahoud, J. C., Asselineau, A., Salengro, S., et., al., (1997), “Subtrochanteric fractures. “A comparative study between gamma nail and angularosteosynthesis with lateral cortical sup-port. Rev. Chir., Orthop. Reparatrice Appar. Mot. 83 (4) pp., 335-342.
 
[15]  Giannoudis PV, Furlong AJ, Macdonald DA, Smith RM (1997). “Reamed against unreamed nailing of the femoral diaphysis: a retrospective study of healing time”. Injury, 28 (1): 15-18.
 
[16]  Gopa lS, and Giannoudis PV (2001). “Prospective randomized study of reamed versus unreamed femoral intramedullary nailing: an assessment of procedures”. J. Orthop. Trauma 15 (6): 458-460.
 
[17]  Papasimos S., Koutsojannis C. M., Panagopoulos A., Megas P. and E. Lambiris (2005). “A randomised comparison of AMBI, TGN and PFN for treatment of unstable trochenteric fractures”, Arch., Orthop. Trauma, 125: 462-468.
 
[18]  Kazakos K. (2011). “Biomechanics of intramedullary nailing” Chapter 2, pp. 23-25. In : Intramedullary Nailing, Greek Union of Orthopaedics Surgeon and Traumatiology, Medicine Editions, Athens.
 
[19]  Dagiopoulos P., Αsimakopoulos Α. and Αnastasopoulos G. (2011). “Orthonormal ‘Intramedullary nail of fracture of femur, Chapter. 5 in book: “Intramedullary nail”, Greek Com pany of Orthopaedics Surgey, Medicine Editions Kostantaras, Athens.
 
[20]  Papasimos S., Koutsojannis C. M., Panagopoulos A., Megas P. and E. Lambiris (2005). “A randomised comparison of AMBI, TGN and PFN for treatment of unstable trochanteric fractures, Arch., Orthop. Trauma, 125: 462-468.