Biomedical Science and Engineering
ISSN (Print): 2373-1257 ISSN (Online): 2373-1265 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Biomedical Science and Engineering. 2015, 3(1), 4-8
DOI: 10.12691/bse-3-1-2
Open AccessReview Article

The Main Molecules Involved in Human Mesenchymal Stem Cells Immunomodulation

Felipe de Lara Janz1, , Helen Dutra Leite2 and Sergio Paulo Bydlowski1

1Laboratory of Genetics and Molecular Hematology, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil

2Laboratory of Pharmaceutical Science, University of Sao Paulo, Sao Paulo, SP, Brazil

Pub. Date: June 05, 2015

Cite this paper:
Felipe de Lara Janz, Helen Dutra Leite and Sergio Paulo Bydlowski. The Main Molecules Involved in Human Mesenchymal Stem Cells Immunomodulation. Biomedical Science and Engineering. 2015; 3(1):4-8. doi: 10.12691/bse-3-1-2


Mesenchymal stem cells (MSCs) are described as undifferentiated cells with high capacity for self-renewal and differentiation ability in different tissues. MSCs are found in various locations in the adult organism as bone marrow, adipose tissue; and in fetal tissues as umbilical cord, placenta and amniotic fluid. They are able to produce and secrete a number of bioactive molecules with different effects: anti-fibrotic, angiogenic and mitogen. These cells also present a great immunomodulatory and anti-inflammatory potential described in experimental and human models. Several studies have demonstrated the ability of MSCs to suppress the proliferation and activation of T, B and NK cells in vitro and in vivo. Its low immunogenic action causes are not recognized by HLA mismatched receptor complex because they express low levels of MHC-I do not express MHC-II and costimulatory molecules CD40, CD80 and CD86. Because of these unique characteristics, MSCs arouse great interest in possible clinical applications in the therapy of diseases that affect the immune system. Although depending on the tissue microenvironment, the MSCs can also trigger inflammatory events. In this work, we described the main factors and another structures involved in MSCs immunoregulation.

mesenchymal stem cells immunomodulation soluble molecules

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  J. Reiser, XY. Zhang, VF. La Russa, “Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases”, Expert Opin Biol Therapy, 2005.
[2]  EM. Horwitz, K. Le Blanc, M. Dominici, I. Mueller, I. Slaper-Cortenbach, Marini FC, “Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement”, Cytotherapy, 7, (5), 393-5, 2005.
[3]  M. Di Nicola, C. Carlo-Stella, M. Magni. “Human bone marrow stromal cells suppress T lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli”, Blood, 99: 3838-3843, 2002.
[4]  RE. Newman, D. Yoo, MA. LeRoux, A. Danilkovitch-Miagkova. “Treatment of Inflammatory Diseases with Mesenchymal Stem Cells”, Inflammation & Allergy - Drug Targets, 8, 110-123, 2009.
[5]  K. Le Blanc, L. Tammik, B. Sundberg, SE. Haynesworth, O. Ringden. “Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex”, Scand J Immunol, 57:11-20, 2003.
[6]  WT. Tse, JD. Pendleton, WM. Beyer, MC. Egalka, EC. Guinan. “Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation”, Transplantation, 75: 389-397, 2003.
[7]  I. Rasmusson, O. Ringden, BL. Sundberg. K. Blanc. “Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms”, Exp Cell Res, 305:33-41, 2005.
[8]  C. Coquerelle, M. Moser, “DC subsets in positive and negative regulation of immunity”, Immunol. Rev. 234:317-334, 2010.
[9]  Lei Chen, Wei Zhang, Han Yue, Qin Han, Bin Chen, Mingxia Shi, Jing Li, Binzong Li, Shengguo You, Yufang Shi, and Robert Chunhua Zhao. “Effects of Human Mesenchymal Stem Cells on the Differentiation of Dendritic Cells from CD34+ Cells”, Stem Cells and Development, 16(5): 719-732, 2007.
[10]  L. Bai, DP. Lennon, V. Eaton, K. Maier, AI. Caplan, SD. Miller, RH. Miller. “Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis”, Glia, 15; 57(11):1192-203, 2009.
[11]  TL. Bonfield, MF. Koloze, DP. Lennon, B. Zuchowski, SE. Yang, AL. Caplan. “Human Mesenchymal Stem Cells Suppress Chronic Airway Inflammation in the Murine Ovalbumin Asthma Model”, Am J Physiol Lung Cell Mol Physiol, 2010.
[12]  DL. Roelen, BJ. van der Mast, PS. in't Anker, C. Kleijburg, M. Eikmans, E. van Beelen, GM. de Groot-Swings, WE. Fibbe, HH. Kanhai, SA. Scherjon, FH. Claas, “Differential immunomodulatory effects of fetal versus maternal multipotent stromal cells”, Human Immunology, 70(1):16-23, 2009.
[13]  T. Yuan, L. Zhang, L. Feng, H. Fan, X. Zhang. “Chondrogenic differentiation and immunological properties of mesenchymal stem cells in collagen type I hydrogel”, Biotechnol Prog, 2010.
[14]  GM. Spaggiari, H. Abdelrazik, F. Becchetti, L. Moretta. “MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2”, Blood, 113:6576-6583, 2009.
[15]  R. Blazquez, F. Sanchez-Margallo, O. de la Rosa, W. Dalemans, V. Álvarez, R. Tarazona, JG. Casado. “Immunomodulatory Potential of Human Adipose Mesenchymal Stem Cells Derived Exosomes on in vitro Stimulated T Cells”, Front Immunol.; 5:556, 2014.
[16]  B. Yu, X. Zhang, X. Li. “Exosomes derived from mesenchymal stem cells”, Int J Mol Sci, 7; 15(3):4142-57, 2014.
[17]  F. Morandi, L. Raffaghello, G. Bianchi, F. Meloni, A. Salis, E. Millo, S. Ferrone, V. Barnaba, V. Pistoia. “Immunogenicity of human mesenchymal stem cells in HLA-class I-restricted T-cell responses against viral or tumor-associated antigens”, Stem Cells, 26(5):1275-87, 2008.
[18]  RP. Phipps, SH. Stein, RL. Roper. “A new view of prostaglandin E regulation of the immune response”, Immunol. Today 12: 349-352, 1991.
[19]  L. Gao, WE. Zackert, JJ. Hasford, ME. Danekis, GL. Milne, C. Remmert, J. Reese, H. Yin, HH. Tai, SK. Dey, et al., “Formation of prostaglandins E2 and D2 via the isoprostane pathway: a mechanism for the generation of bioactive prostaglandins independent of cyclooxygenase”, J. Biol. Chem. 278: 28479-28489, 2003.
[20]  LJ. Crofford, “COX-1 and COX-2 tissue expression: Implications and predictions”, J Rheumatol Suppl, 49:15-19, 1997.
[21]  R. Meisel, A. Zibert, M. Laryea, “Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 23-dioxygenase mediated tryptophan degradation”, Blood. 103:4619-4621, 2004.
[22]  S. Aggarwal, MF. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses”, Blood, 105:1815-1822, 2005.
[23]  P. Kalinski, “Regulation of immune responses by prostaglandin E2”, J Immunol, Jan 1; 188 (1):21-8, 2012.
[24]  GM. Spaggiari, A. Capobianco, S. Becchetti, MC. Mingari, L. Moretta. “Mesenchymal stem cell natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs whereas MSCs can inhibit IL-2-induced NK-cell proliferation”, Blood. 107:1484-1490, 2006.
[25]  H. Soliman, B. Rawal, J. Fulp, JH. Lee, A. Lopez, MM. Bui, F. Khalil, S. Antonia, HG. Yfantis, DH. Lee, TH. Dorsey, S. Ambs. “Analysis of indoleamine 2-3 dioxygenase (IDO1) expression in breast cancer tissue by immunohistochemistry”, Cancer Immunol Immunother, 62(5):829-37, 2013.
[26]  C. Liang, SL. Chen, M. Wang, WJ. Zhai, Z. Zhou, AM. Pang, SZ. Feng, MZ. Han. “Synergistic immunomodulatory effects of interferon-gamma and bone marrow mesenchymal stem cells”, Zhonghua Xue Ye Xue Za Zhi, 34:213-216, 2013.
[27]  WT. Hsu, CH. Lin, BL. Chiang, HY. Jui, KK. Wu, CM. Lee. “Prostaglandin E2 potentiates mesenchymal stem cell-induced IL-10+IFN-γ+CD4+ regulatory T cells to control transplant arteriosclerosis”, J Immunol, 190:2372-2380, 2013.
[28]  AL. Mellor, DH. Munn. “IDO expression by dendritic cells: tolerance and tryptophan catabolism”, Nat Rev Immunol, 4 (10):762-74, 2004.
[29]  E. Fainardi, M. Castellazzi, M. Stignani, F. Morandi, G. Sana, R. Gonzalez, V. Pistoia, OR. Baricordi, E. Sokal, J. Peña. “Emerging topics and new perspectives on HLA-G”, Cell Mol Life Sci. 2010.
[30]  C. Menier, N. Rouas-Freiss, B. Favier, J. LeMaoult, P. Moreau, ED. Carosella, “Recent advances on the non-classical major histocompatibility complex class I HLA-G molecule”, Tissue Antigens, 75: 201-206, 2010.
[31]  Z. Selmani, A. Naji, I. Zidi, B. Favier, E. Gaiffe, L. Obert, C. Borg, P. Saas, P. Tiberghien, N. Rouas-Freiss, ED. Carosella, F. Deschaseaux, “Human Leukocyte Antigen-G5 Secretion by Human Mesenchymal Stem Cells Is Required to Suppress T Lymphocyte and Natural Killer Function and to Induce CD4+CD25highFOXP3+ Regulatory T Cells”, Stem Cells, 26: 212-222, 2008.
[32]  P. Moreau, F. Adrian-Cabestre, C. Menier et al. “IL-10 selectively induces HLA-G expression in human trophoblasts and monocytes”, Int Immunol; 11: 803-811, 1999.
[33]  MO. Li, YY. Wan, S. Sanjabi, AK. Robertson, RA. Flavell. “Transforming growth factor-beta regulation of immune responses”, Annu Rev Immunol, 24:99-146, 2006.
[34]  T. Brabletz, I. Pfeuffer, E. Schorr, F. Siebelt, T. Wirth, E. Serfling. “Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site”, Mol Cell Biol, 13 (2):1155-62, 1993.
[35]  A. Nasef, A. Chapel, C. Mazurier, S. Bouchet, M. Lopez, N. Mathieu, et al. “Identification of IL-10 and TGF-beta transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells”, Gene Expr, 13(4-5):217-26, 2007.
[36]  M. Fischer, M. Ehlers, Toll-like Receptors in Autoimmunity. Annals of the New York Academy of Sciences, 1143: 21-34, 2008.
[37]  CA. Opitz, U. M Litzenburger, C. Lutz, TV. Lanz, I. Tritschler, J. Köppel, WK. Aicher, M. Weller, W. Wick, M. Platten, “Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1via interferon-beta and proteinkinase”, Stem Cells 27, 909-919, 2009.
[38]  O. DelaRosa, W. Dalemans, E. Lombardo. “Toll-Like Receptors as Modulators of Mesenchymal Stem Cells”, Front Immunol, 3: 182, 2012.
[39]  G. Ren, L. Zhang, X. Zhao, G. Xu, Y. Zhang, AI. Roberts, RC. Zhao, Y. Shi. “Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide”, Cell Stem Cell, 7; 2(2):141-50, 2008.
[40]  I. Molendijk, M. Duijvestein, AE. van der Meulen-de Jong, WK. van Deen, M. Swets, DW. Hommes, HW. Verspaget. “Immunomodulatory Effects of Mesenchymal Stromal Cells in Crohn’s Disease”. Journal of Allergy; Volume, 2012.
[41]  W. Li, G. Ren, Y. Huang, J. Su, Y. Han, J. Li, X. Chen, K. Cao, Q. Chen, P. Shou, L. Zhang, Z-R. Yuan, AI. Roberts, S. Shi, AD. Le Y. Shi. “Mesenchymal stem cells: a double-edged sword in regulating immune responses”, Cell Death and Differentiation, 19, 1505-1513, 2012.
[42]  S. Ghannam, C. Bouffi, F. Djouad, C. Jorgensen D. Noël. “Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications”, Stem Cell Research & Therapy, 1:2, 2010.
[43]  C. Bouffi, C. Bony, G. Courties, Jorgensen C, Noel D, “IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis”, PLoS One, 7; 5(12), 2010.
[44]  Thijssen, V. L., Poirier, F., LG. Baum, AW. Griffioen, “Galectins in the tumor endothelium: opportunities for combined cancer therapy”, Blood. 110: 2819-2827, 2007.
[45]  RY. Yang, GA. Rabinovich, FT. Liu, “Galectins: structure, function and therapeutic potential”, Expert Rev. Mol. Med. 10: e17, 2008.
[46]  F. Gieseke, A. Kruchen, N. Tzaribachev, F. Bentzien, M. Dominici, I. Muller. Proinflammatory stimuli induce galectin-9 in human mesenchymal stromal cells to suppress T-cell proliferation. Eur. J. Immunol. 43: 2741-2749, 2013.
[47]  M. Sioud, A. Mobergslien, A. Boudabous, Y. Fløisand, “Evidence for the Involvement of Galectin-3 in Mesenchymal Stem Cell Suppression of Allogeneic T-Cell Proliferation”, Scandinavian Journal of Immunology, 71: 267-274, 2010.
[48]  FU. Hartl, “Molecular chaperones in cellular protein folding”, Nature, 381, 571–580, 1996.
[49]  MJ. Mansilla, X. Montalban, C. Espejo. “Heat shock protein 70: roles in multiple sclerosis”, Mol Med, 7; 18: 1018-28, 2012.
[50]  S. Basu, RJ. Binder, R. Suto, KM. Anderson, PK. Srivastava. “Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway”, Int Immunol 12: 1539-46, 2000.
[51]  D. Cizkova, J. Rosocha, I. Vanicky, J. Radonak, J. Galik, M. Cizek. “Induction of mesenchymal stem cells leads to HSP72 synthesis and higher resistance to oxidative stress”, Neurochem. Res, 31(8):1011-1020, 2006.