Biomedicine and Biotechnology:

Home » Journal » BB » Archive » Volume 2, Issue 3

Article

Application of Pseudomonas aeruginosa to Clean-up Polluted Water in Ankleshwar, Gujarat, India

1Industrial Waste Water Research Laboratory, Applied & Environmental Microbiology Lab, Enviro Technology Limited (CETP), India


Biomedicine and Biotechnology. 2014, 2(3), 42-45
DOI: 10.12691/bb-2-3-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Maulin P Shah. Application of Pseudomonas aeruginosa to Clean-up Polluted Water in Ankleshwar, Gujarat, India. Biomedicine and Biotechnology. 2014; 2(3):42-45. doi: 10.12691/bb-2-3-1.

Correspondence to: Maulin  P Shah, Industrial Waste Water Research Laboratory, Applied & Environmental Microbiology Lab, Enviro Technology Limited (CETP), India. Email: shahmp@uniphos.com

Abstract

Microbial biodegradation of pollutants has intensified in recent years as mankind strives to find sustainable ways to clean up contaminated environments. These biological processes play a major role in the removal of contaminants in the polluted environment. Utilization of catabolic versatility of naturally occurring microorganisms in biodegrading processes is an essential process to degrade or convert such compounds. Recent developments in molecular microbial ecology offer new tools that facilitate molecular analyses of microbial population at contaminated sites. Both conventional and the molecular methods were used in this study to identify the bacteria from different polluted environments. Bacteria were isolated from the dye industry, Common Effluent Treatment Plant & Final Effluent Treatment Plant of Ankleshwar, Gujarat, India. Then, microbial DNA was isolated and amplified with Pseudomonas aeruginosa specific primers. The amplification of 162 bp specific region of catabolic gene of Pseudomonas aeruginosa confirmed the presence of this organism in the contaminated water collected from different climatic regions in Ankleshwar, Gujarat, India.

Keywords

References

[[[[[[[[[[[[[[[[[[[[
[[1]  Ferraz, E. R. A., Grando, M. D., & Oliveira, D. P. (2011). Journal of Hazardous Materials, 192, 628-633.
 
[[2]  Ferraz, E. R. A., Umbuzeiro, G. A. G., Caloto-Oliveira, A., Chequer, F. M. D., Zanoni, M. V. B., Dorta, D. J., & Oliveira, D. P. (2011). Environmental Toxicology, 26, 489-497.
 
[[3]  Chequer, F. M. D., Angeli, F., Ferraz, E. R. A., Tsuboy, M., Marcarini, J., Mantovani, M., & Oliveira, D. (2009). Mutation Research, 676, 83-86.
 
[[4]  Umbuzeiro, G., Freeman, H., Warren, S., Oliveira, D., Terao, Y., Watanabe, T., & Claxton, L. (2005). Chemosphere, 60, 55-64.
 
[[5]  Wong, P., & Yuen, P. (1998). Applied Microbiology, 85, 79-87.
 
Show More References
[6]  Ayed, L., Mahdhi, A., Cheref, A., & Bakhrouf, A. (2011). Desalination, 274, 272-277.
 
[7]  Mansour, H. B., Ayed-Ajmi, Y., Mosrati, R., Corroler, D., Ghedira, K., Barillier, D., & Chekir-Ghedira, L. (2010). Environmental Science and Pollution Research, 17, 1371-1378.
 
[8]  Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Bioresource Technology, 77, 247-255.
 
[9]  Forgacs, E., Cserhati, T., & Oros, G. (2004). Environment International, 30, 953-971.
 
[10]  Asgher, M., Bhatti, H. N., Ashraf, M., & Legge, R. (2008). Biodegradation, 19, 771-783.
 
[11]  El-Sheekh, M. M., Gharieb, M. M., & Abou-El-Souod, G. (2009). International Biodeterioration and Biodegradation, 63, 699–704.
 
[12]  Lin, Y., & Leu, J. (2008). Biochemical Engineering Journal, 39, 457-467.
 
[13]  Tan, L., Qu, Y., Zhou, J., Li, A., & Gou, M. (2009). Applied Biochemistry and Biotechnology, 159, 728-738.
 
[14]  Patil, P. S., Phugare, S. S., Jadhav, S. B., & Jadhav, J. P. (2010). Journal of Hazardous Materials, 181, 263-270.
 
[15]  Yu, Z., & Wen, X. (2005). International Biodeterioration and Biodegradation, 56, 109-114.
 
[16]  Jadhav, J. P., Parshetti, G. K., Kalme, S. D., & Govindwar, S. P. (2007). Chemosphere, 68, 394-400.
 
[17]  Maulin, P. Shah., Kavita, A. Patel., Sunu, S. Nair., & Darji AM. (2013). Optimization of Environmental Parameters on Microbial Degradation of Reactive Black Dye. Journal of Bioremediation & Biodegradation, 4:3.
 
[18]  Maulin, P. Shah., Kavita, A. Patel., Sunu, S. Nair., & Darji AM. (2013). Bioremoval of Azo dye Reactive Red by Bacillus spp. ETL-1982. Journal of Bioremediation & Biodegradation, 4:3.
 
[19]  Maulin, P. Shah., Kavita, A. Patel., Sunu, S. Nair., & Darji AM. (2013).Microbial degradation of Textile Dye (Remazol Black B) by Bacillus spp. ETL-2012. Journal of Bioremediation & Biodegradation, 4:2.
 
[20]  Hugenholtz, P., B. M. Goebel and N. R. Pace (1998). “Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity” Journal of Bacteriology, 180: 4765-4774.
 
[21]  Martin, L. (2001). “DNA extraction from soils: Oil bias from new microbial diversity analysis methods” Applied Environmental Microbiology, 67: 2354-2359.
 
[22]  Allan, R. N., L. Lebbe, J. P. Heyrman, P. De Vos, C. J. Buchanan and N. A. Logan (2005). “Brevibacilluslevickii sp. nov. and Aneurinibacillusterranovensis sp. nov. two novel thermoacidophiles isolated from geothermal soils of Northern Victoria Land, Antarctica” International Journal of Systematic and Evolutionary Microbiology, 55: 1039-1050.
 
[23]  Phoebe, Jr. C. H., J. Combie, F. G. Albert, K. Van Tran, J. Cabrera and H. J. Correira (2001). “Extremophilic organisms as an unexplored source for antifungal compounds” Journal of Antibiotics, 54: 56-65.
 
[24]  Chaudhuri, S. R., A. K. Pattanayak and A. R. Thakur (2006). “Microbial DNA extraction from samples of varied origin” Current Science, 91(12): 1697-1700.
 
[25]  Ekanayake, W. M. J. Y., K. Vivehananthan and T. Wickramarachchi (2010). “Identification and classification of xenobiotic degrading bacteria in different waste types” Proceedings of the 10th Agricultural Research Symposium, Wayamba University of Sri Lanka, 65-69.
 
Show Less References
comments powered by Disqus