Biomedicine and Biotechnology
ISSN (Print): 2378-5527 ISSN (Online): 2378-5535 Website: http://www.sciepub.com/journal/bb Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Biomedicine and Biotechnology. 2016, 4(1), 5-11
DOI: 10.12691/bb-4-1-2
Open AccessArticle

In Silico Analysis of Single Nucleotide Polymorphism (SNPs) in Human RAG 1&RAG2 Genes of Severe Combined Immunodeficiency from Functional Analysis to Polymorphisms in microRNA

Mona ShamsAldeen S.Ali1, 2, , Tomador Siddig M.Z1, 2, Rehab A. Elhadi1, 2, Muhammad R.Yousof2, Siddig Eltyeb Yousif Abdallah1, Maiada Mohamed Yousif Ahmed2, Nosiba Yahia Mohamed Hassen1, Sulum Omer Masoud Mohamed1, Marwa Mohamed Osman1 and Mohamed A. Hassan2

1Omdurman Teaching Hospital, Sudan

2Department of Applied Bioinformatics, Africa City of Technology

Pub. Date: December 12, 2016

Cite this paper:
Mona ShamsAldeen S.Ali, Tomador Siddig M.Z, Rehab A. Elhadi, Muhammad R.Yousof, Siddig Eltyeb Yousif Abdallah, Maiada Mohamed Yousif Ahmed, Nosiba Yahia Mohamed Hassen, Sulum Omer Masoud Mohamed, Marwa Mohamed Osman and Mohamed A. Hassan. In Silico Analysis of Single Nucleotide Polymorphism (SNPs) in Human RAG 1&RAG2 Genes of Severe Combined Immunodeficiency from Functional Analysis to Polymorphisms in microRNA. Biomedicine and Biotechnology. 2016; 4(1):5-11. doi: 10.12691/bb-4-1-2

Abstract

Severe combined immunodeficiency (SCID) is an inherited Primary immunodeficiency PID, which is characterized by the absence or dysfunction of T lymphocytes. Defects in RAG1 and RAG2 are known to cause a T-B-NK+ form of SCID. Recombinase activating genes RAG1 and RAG2 (OMIM 179615,179616 respectively) are expressed exclusively in lymphocytes and mediate the creation of double-strand. DNA breaks at the sites of recombination and in signal sequences during T− and B− cell receptor gene rearrangement. This study was focused on the effect of nonsynonymous single nucleotide polymorphisms in the function and structure of RAG1& RAG2 genes using in silico analysis. Only nsSNPs and 3'UTR SNPs were selected for computational analysis. Predictions of deleterious nsSNPs were performed by bioinformatics software. Five damaging nsSNPs (rs112047157, rs61758790, rs4151032, rs61752933, rs75591129) were predicted in RAG1 and two damaging nsSNPs (rs112927992, rs17852002) in RAG2, all of this nsSNPs found on domain that important in binding and mutation effect in its protein function. We hope to provide more information that needed to help researchers to do further study in SCID especially in our country where consanguineous marriage is common.

Keywords:
severe combined immunodeficiency (SCID) primary immunodeficiency (PID) T lymphocytes RAG1&2 nonsynonymous Single Nucleotide Polymorphisms (nsSNP)

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Notarangelo LD. Primary immunodeficiencies. J Allergy ClinImmunol. 2010; 125: S182-S194.
 
[2]  Fausto Cossu. Genetics of SCID. Ital J Pediatr. 2010; 36: 76.
 
[3]  Jennifer M. Puck, MD. Laboratory Technology for Population-based Screening for SCID in Neonates: The Winner Is T-cell Receptor Excision Circles (TRECs). J Allergy ClinImmunol. 2012 Mar; 129(3): 607-616.
 
[4]  Jennifer M. Puck. The case for newborn screening for severe combined immunodeficiency and related disorders. Ann N Y Acad Sci. 2011 Dec; 1246: 108-117.
 
[5]  Mirjam van der Burg & Andy R. Gennery. The expanding clinical and immunological spectrum of severe combined immunodeficiency. Eur J Pediatr (2011) 170: 561-571.
 
[6]  Vries E, Driessen G. Educational paper: primary immunodeficiencies in children: a diagnostic challenge. Eur J Pediatr. 2011; 170: 169-177.
 
[7]  Rebecca H. Buckley, M.D. Transplantation of Hematopoietic Stem Cells in Human Severe Combined Immunodeficiency: Longterm Outcomes. Immunol Res. 2011 Apr; 49(0): 25-43.
 
[8]  Buckley RH, Schiff RI, Schiff SE, Markert ML, Williams LW, Harville TO, Roberts JL, Puck JM. Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr. 1997; 130: 378-87.
 
[9]  Stephan JL, Vlekova V, Le Deist F, De Saint Basile G, Donadieu J, Durandy A, Blanche S, Griscelli C, Fischer A. A retrospective single-center study of clinical presentation and outcome in 117 patients with severe combined immunodeficiency. Immunodeficiency. 1993; 4: 87-8.
 
[10]  Diana Tasher and Ilan Dalal. The genetic basis of severe combined immunodeficiency and its variants. Appl Clin Genet. 2012; 5: 67-80.
 
[11]  Fischer A. Severe combined immunodeficiencies (SCID) ClinExpImmunol. 2000; 122: 143-149.
 
[12]  Niek P van Til, Helen de Boer, Nomusa Mashamba, Agnieszka Wabik, Marshall Huston, Trudi P Visser, Elena Fontana, Pietro Luigi Poliani, Barbara Cassani, Fang Zhang, Adrian J Thrasher, Anna Villa, and Gerard Wagemaker. Correction of Murine Rag2 Severe Combined Immunodeficiency by Lentiviral Gene Therapy Using a Codon-optimized RAG2 Therapeutic Transgene. MolTher. 2012 Oct; 20(10): 1968-1980.
 
[13]  Corneo, B., Moshous, D., Gungor, T., Wulffraat, N., Philippet, P., Le Deist, F., Fischer, A., de Villartay, J.-P. Identical mutations in RAG1 or RAG2 genes leading to defective V(D)J recombinase activity can cause either T-B-severe combined immune deficiency or Omenn syndrome. Blood 97: 2772-2776, 2001.
 
[14]  Christoph B.Geier, Alexander Piller, Angela Linder, Kai M. T.Sauerwein, Martha M. Eibl and Hermann M.Wolf.Leaky RAG Deficiency in Adult Patients with Impaired Antibody Production against Bacterial Polysaccharide Antigens. PLoS One. 2015; 10(7): e0133220.
 
[15]  Sherrington, P. D., Forster, A., Seawright, A., van Heyningen, V., Rabbitts, T. H. Human RAG2, like RAG1, is on chromosome 11 band p13 and therefore not linked to ataxia telangiectasia complementation groups. Genes Chromosomes Cancer 5: 404-406, 1992.
 
[16]  Oettinger, M. A., Stanger, B., Schatz, D. G., Glaser, T., Call, K., Housman, D., Baltimore, D. The recombination activating genes, RAG1 and RAG2, are on chromosome 11p in humans and chromosome 2p in mice. Immunogenetics 35: 97-101, 1992.
 
[17]  Chrystelle Couëdel, Christopher Roman, Alison Jones, Paolo Vezzoni, Anna Villa, and Patricia Cortes. Analysis of mutations from SCID and Omenn syndrome patients reveals the central role of the Rag2 PHD domain in regulating V(D)J recombination. J Clin Invest. 2010 Apr 1; 120(4): 1337-1344.
 
[18]  Min-Sung Kim, Mikalai Lapkouski,Wei Yang, and Martin Gellert. Crystal Structure of the V(D)J Recombinase RAG1-RAG2. Nature. 2015 Feb 26; 518(7540): 507-511.
 
[19]  Nathalie Nicolas, Despina Moshous, Marina Cavazzana-Calvo, Dora Papadopoulo, Régina de Chasseval, Françoise Le Deist, Alain Fischer, and Jean-Pierre de Villartay. A Human Severe Combined Immunodeficiency (SCID) Condition with Increased Sensitivity to Ionizing Radiations and Impaired V(D)J Rearrangements Defines a New DNA Recombination/Repair Deficiency. J Exp Med. 1998 Aug 17; 188(4): 627-634.
 
[20]  Yu-Hang Zhang, Keerthi Shetty, Marius D. Surleac, Andrei J. Petrescu and David G. Schatz. Mapping and Quantitation of the Interaction between the Recombination Activating Gene Proteins RAG1 and RAG2. May 8, 2015 The Journal of Biological Chemistry, 290, 11802-11817.
 
[21]  Paola Rivera-Munoz, Laurent Malivert, Sonia Derdouch,Chantal Azerrad, Vincent Abramowski, Patrick Revy and Jean-Pierre de Villartay. DNA repair and the immune system: From V(D)J recombination to aging lymphocytes. Eur. J. Immunol. 2007. 37: S71-82.
 
[22]  David Warde-Farley, QM, Sylva L., Donaldson Ovi, Comes Khalid, Zuberi Rashad, Badrawi Pauline, Chao Max, Franz Chris, Grouios Farzana, Kazi Christian, Tannus Lopes, Anson Maitland, Sara Mostafavi, Jason Montojo, Quentin Shao, George Wright, Gary D. Bader. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010; 38: W214-W2.
 
[23]  Ng PC, Henikoff S (2001). Predicting deleterious amino acid substitutions. Genome Res 11:863-874.
 
[24]  V. Ramensky, P. Bork, S. Sunyaev, Human non-synonymous SNPs: server and survey, Nucleic Acids Res. 30 (2002) 3894-3900.
 
[25]  Capriotti E, Calabrese R, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005; (33): 306-10.
 
[26]  Pettersen EF, Goddard TD, Huang CC, et al. (2004). Comput UCSF Chimera—a visualization system for exploratory research and analysis. Chem. 25(13): 1605-12.
 
[27]  Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces.BMC Bioinformatics. 2010; 11(1):548.
 
[28]  Bhattacharya A. Ziebath JD and Cui Y. (2014). PolmiRTS Database 3.0: Linking polymorphisms in microRNAs and their target sites with human diseases and biological pathway. Nucleic Acids Res. 42(D1): D86-D91.
 
[29]  Brian T Kelly, Jonathan S Tam, James W Verbsky, and John M Routes. Screening for severe combined immunodeficiency in neonates. ClinEpidemiol. 2013; 5: 363-369.
 
[30]  Hassan Abolhassani, Ning Wang, Asghar Aghamohammadi, MD, PhD,2 Nima Rezaei, Yu Nee Lee, Francesco Frugoni, Luigi D. Notrangelo, Qiang Pan-Hammarström and Lennart Hammarström. A Hypomorphic RAG1 Mutation Resulting in a Phenotype Resembling Common Variable Immunodeficiency. J Allergy Clin Immunol. 2014 Dec; 134(6): 1375-1380.