Biomedicine and Biotechnology
ISSN (Print): 2378-5527 ISSN (Online): 2378-5535 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Biomedicine and Biotechnology. 2014, 2(1), 14-19
DOI: 10.12691/bb-2-1-3
Open AccessArticle

Optimization of Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Mango Ginger Rhizome (Curcuma Amada Roxb.) Using Response Surface Methodology

Krishna Murthy T P1, and B Manohar2

1Department of Biotechnology, Sapthagiri College of Engineering, Bangalore, India

2Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore, India

Pub. Date: January 23, 2014

Cite this paper:
Krishna Murthy T P and B Manohar. Optimization of Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Mango Ginger Rhizome (Curcuma Amada Roxb.) Using Response Surface Methodology. Biomedicine and Biotechnology. 2014; 2(1):14-19. doi: 10.12691/bb-2-1-3


Relying on modern methods of separation, strict quality control, advanced technology and optimal manufacturing process, supercritical carbon dioxide (SC-CO2) is considered to offer an opportunity to efficiently and economically improve recovery and reproducibility of natural product in its pure form. Three-level Box–Behnken factorial design (BBD) from response surface methodology (RSM) was applied to optimize the main extraction conditions including pressure, temperature and extraction time. The three different levels of Pressure, temperature and time are between 100-250 bar, 40-60°C and 5-15 hrs respectively. The optimum conditions were found to be 350 bar, 60°C and 15 hrs. Under the optimum conditions, total phenolic content obtained was 152 mg GAE/total extract, which well agreed with the predicted yield. HPLC analysis was carried out for the optimum conditions for the identification and quantification of the phenolic compounds.

Supercritical carbon dioxide mango ginger phenolic compounds response surface methodology

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 5


[1]  Policegoudra, R.S., Aradya, S.M., “Biochemical changes and antioxidant activity of mango ginger (Curcuma amadaRoxb.) rhizomes during postharvest storage at different temperatures”. Postharvest Biology and Technology, vol. 46 no. 2, pp. 189-194, 2007.
[2]  Gholap, S.A., Bandyopadhyaya, C., “Characterization of mango-like aroma in Curcuma amada Roxb”. Journal of Agricultural and Food Chemistry, vol. 32, no. 1, pp. 57-59, 1984.
[3]  CSIR (Council of Scientific and Industrial Research), Wealth of India – raw materials. New Delhi, vol. 2, pp. 401, 1950.
[4]  Policegoudra, R.S., “Functional properties of bioactive molecules from mango ginger (Curcuma amadaRoxb.) and its applications in food”. PhD Thesis, Universityof Mysore, India, 2008.
[5]  Manohar, B., Uday Shankar, K., “Extraction Modelling and characterization of bioactive components from Psoralea corylifolia L. Obtained by supercritical carbon dioxide”. Journal of Food Process Technology, vol. 3, no. 2, pp. 144, 2012.
[6]  Pereira, C.G., Meireles, M.A.M., “Supercritical Fluid Extraction of Bioactive compounds: Fundamentals, Application and Economic Perspectives”. Food and Bioprocess Technology, vol. 3, no. 3, pp. 340-372, 2010.
[7]  Khajeh, M., “Optimization of process variables for essential oil components from satureja hortensis by supercritical fluid extraction using box behnken experimental design”. Journal of supercritical Fluids, vol. 55, no. 3, pp. 944-948, 2011.
[8]  Jai, D., Li, S., Xiao, L., “Supercritical CO2 extraction of plumula nelumbinis oil: Experimental and modeling”. Journal of Supercritical Fluids, vol. 50, no. 3, pp. 229-234, 2009.
[9]  Cheah, E. L. C., Chan, C. L., Heng, P. W. S., “Supercritical Carbon dioxide and its application in the extraction of active principles from plant material”. Asian Journal of Pharmaceutical Sciences, vol. 1, no. 1, pp. 60, 2006.
[10]  Ixtaina, V. Y., Vega, A., Nolasco, S. M., Tomas, M. C., Gimeno, M., Barzana, E., Tecante, A., “Supercritical carbon carbon dioxide extraction of oil from Mexican chia seed (salvia hispanica L.). Characterization and process optimization”, Journal of Supercritical Fluids vol. 55, no. 1, pp. 192-199, 2010.
[11]  Meure, L.A., Foster, N.R., Dehghani, F., “Conventional and Dense Gas Techniques for the Production of Liposomes: A Review”, AAPS Pharmscitechology, vol. 9, no. 3, pp. 798-809, 2008.
[12]  Herrero, M., Mendiola, J.A., Cifuentes, A., Ibáñez, E., “Supercritical fluid extraction: Recent advances and applications”. Journal of Chromatography A, vol. 1217, no. 16, pp. 2495-2511 16 2010.
[13]  Zarena, A.S., “Characterization of bioactive compounds from Garcinia mangostana L. obtained by supercritical fluid carbon dioxide process”. PhD thesis, University of Mysore, India, (2011).
[14]  Manohar, B., Udaya Sankar, K., “Enrichment of bakuchiol in supercritical carbon dioxide extracts of chiba seed (Psoralea corylifolia L.) using molecular distillation-Response surface methodology”. Biotechnology and Bioprocess Engineering, vol. 14, no. 1, pp. 112-117, 2009.
[15]  Bas, D., Boyac, I.H., “Modeling and optimization I: Usability of response surface methodology”. Journal of Food Engineering, vol. 78, no. 3, pp. 836-845, 2007.
[16]  Singleton, V.L., Rossi, Jr. J.A., “Colorimetry of total phenolic with phosphomolybdic-phosphotungstic acid reagents”. American Journal of Enology and Viticulture, vol. 16, no. 3, pp. 144-158, 1965.
[17]  Siddaraju, M.N., Dharmesh, S.M., “Inhibition of Gastric H+, K+- ATPase and Helicobacter pylori Growth by Phenolic Antioxidants of Curcuma amada”. Journal of Agricultural and Food Chemistry, vol. 55, no. 18, pp. 7377-7386, 2007.
[18]  Zarena, A. S., Manohar, B., Udaya Sankar, K., “Optimization of Supercritical Carbon Dioxide Extraction of Xanthones from Mangosteen Pericarp by Response Surface Methodology”. Food and Bioprocess Technology, vol. 5, no. 4, pp. 1181-1188, 2012.
[19]  Kong, Y., Fu, Y-J., Zu, Y-G., Liu, W., Wang, W., Hua, X., Yang, M., “Ethanol modified supercritical fluid extraction and antioxidant activity of cajaninstilbene acid and pinostrobin from pigeonpea [Cajanus cajan (L.) Millsp.] leaves”. Journal of Food Chemistry, vol. 117, no. 1, 152-159, 2009.