Journal of Automation and Control
ISSN (Print): 2372-3033 ISSN (Online): 2372-3041 Website: Editor-in-chief: Santosh Nanda
Open Access
Journal Browser
Journal of Automation and Control. 2017, 5(2), 54-59
DOI: 10.12691/automation-5-2-5
Open AccessArticle

Motion Planning of Mobile Robot

Tomáš Lipták1, , Michal Kelemen1, Alexander Gmiterko1, Ivan Virgala1 and Darina Hroncová1

1Department of Mechatronics, Faculty of Mechanical Engineering, Technical University of Košice, Košice, Slovakia

Pub. Date: December 11, 2017

Cite this paper:
Tomáš Lipták, Michal Kelemen, Alexander Gmiterko, Ivan Virgala and Darina Hroncová. Motion Planning of Mobile Robot. Journal of Automation and Control. 2017; 5(2):54-59. doi: 10.12691/automation-5-2-5


The article deals with the issue of mathematical modelling of wheeled mobile robot. The introductory part of article contains theory regarding different approaches of mathematical modelling that we used. Further we applied these methods of mathematical modelling to wheeled mobile robot and we determined the mathematical model. The last part contains the motion planning in the base space and motion planning in the fiber space. These simulations of movement were realized in MATLAB.

lagrangian mechanics geometric mechanics mathematical modelling motion planning

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  J. H. Reif. Complexity of the mover’s problem and generalizations. In Proceedings IEEE Symposium on Foundations of Computer Science, pages 421-427, 1979.
[2]  H. H. Gonzalez-Banos, D. Hsu, and J. C. Latombe. Automous Mobile Robots: Sensing, Control, Decision-Making and Applications, chapter Motion Planning: Recent Developments. CRC Press, 2006.
[3]  S. R. Lindemann and S. M. LaValle. Current issues in sampling-based motion planning. In P. Dario and R. Chatila, editors, Robotics Research: The Eleventh International Symposium, pages 36-54. Springer-Verlag, Berlin, 2005.
[4]  J. T. Schwartz and M. Sharir. A survey of motion planning and related geometric algorithms. Artificial Intelligence Journal, 37: 157-169, 1988.
[5]  H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge, MA, 2005.
[6]  J.-C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.
[7]  S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006. Also available at http://planning.cs.uiuc.ed/.
[8]  J. Cort´es Monforte, Geometric, control, and numerical aspects of nonholonomic systems. Berlin; Heidelberg: Springer, 2002, vol. 1793.
[9]  Shammas, H. Choset, and A. A. Rizzi, “Geometric motion planning analysis for two classes of underactuated mechanical systems,” The International Journal of Robotics Research, vol. 26, no. 10, pp. 1043-1073, 2007.
[10]  A. Bloch, Nonholonomic mechanics and control. New York: Springer, c2003., vol. v. 24.
[11]  OSTROWSKI J. P.: The Mechanics and Control of Undulatory Robotic Locomotion [thesis]. California Institute of Technology Pasadena, September 19, 1995.