Journal of Automation and Control
ISSN (Print): 2372-3033 ISSN (Online): 2372-3041 Website: Editor-in-chief: Santosh Nanda
Open Access
Journal Browser
Journal of Automation and Control. 2017, 5(2), 50-53
DOI: 10.12691/automation-5-2-4
Open AccessArticle

Friction Difference as Principle of Robot Locomotion

Alexander Gmiterko1, Ľubica Miková1, Ivan Virgala1, Tomáš Lipták1 and Michal Kelemen1,

1Department of Mechatronics, Technical University of Kosice, Faculty of Mechanical Engineering, Kosice, Slovak Republic

Pub. Date: December 11, 2017

Cite this paper:
Alexander Gmiterko, Ľubica Miková, Ivan Virgala, Tomáš Lipták and Michal Kelemen. Friction Difference as Principle of Robot Locomotion. Journal of Automation and Control. 2017; 5(2):50-53. doi: 10.12691/automation-5-2-4


Paper deals with friction difference principle, which is used as basic principle of robot locomotion. Piezoactuator is used as driving unit for locomotion. Structure of robot is described and also steady state velocity is derived.

friction difference pipe locomotion piezoactuator

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  S. AOSCHIMA, T. TSUJIMURI, T. YABUTA, Design and analysis of a midget mobile robot using piezo vibration for mobility in a thin tube, In Proc. of the International Conference on Advanced Mechatronics, Tokyo, p. 659-663, 1989.
[2]  K. SUZUMORI, T. MIYAGAWA, M. KIMURA, and Y. HASEGAWA, Micro Inspection Robot for 1-in Pipes, IEEE/ASME Transactions on Mechatronics, Vol. 4, No. 3, September 1999, 286-292. 1999.
[3]  S. HIROSE, H. OHNO, T. MITSUI, and K. SUYAMA, Design of In-Pipe Inspection Vehicles for φ25, φ50, φ150 Pipes, In Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, Michigan, May 1999, pp. 2309-2314, 1999.
[4]  Ch. JUN, Ch. TAO, D. ZONGQUAN, Design method of Modular Units for Articulated in-Pipe Robot Inspecting System, 2011 IEEE Second International Conference on Digital Manufacturing & Automation, pp. 389-392, 2011.
[5]  AM. BERTETTO, M. RUGGIU, In-pipe inch-worm pneumatic flexible robot, In Proc. of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Vol. 2. Italy; p. 1226-31, 2001.
[6]  J. QIAO, J. SHANG, A. GOLDENBERG, Development of inchworm in-pipe robot based on self-locking mechanism. IEEE/ASME Transactions on Mechatronics, Digital Object Identifier 10, 1109/TMECH; 2012.
[7]  K. BYUNGKYU, GU, L. MOON, L. YOUNG PYO, In. K. YONG, Ho, L.GEUN, An earthworm-like micro robot using shape memory alloy actuator, Sensors and Actuators A, Vol. 125 (2006), pp. 429-437. 2006.
[8]  A. KUWADA, K. TSUJINO, K. SUZUMORI, T. KANDA, Intelligent Actuators Realizing Snake-like Small Robot for Pipe Inspection, In Proc. of International Symposium on Micro-Nano Mechatronics and Human Science, 2006, Nagoya, pp. 1-6, 2006.
[9]  W. NEUBAUER, Locomotion with articulated legs in pipes or dusts, Robot. Autonomous Syst., Vol. 11, No. 3-4, pp. 163-169, 1993.
[10]  Y. J. YUM, H. S. HWANG, M. KELEMEN, V. MAXIM, and P. FRANKOVSKÝ, In-pipe micromachine locomotion via the inertial stepping principle, Journal of Mechanical Science and Technology 28 (8) (2014), 3237-3247. 2014.
[11]  A. DEGANI, S. FENG, H. CHOSET, and M. T. MASON, Minimalistic, Dynamic, Tube Climbing Robot, Proc. of 2010 IEEE Int. Conf. on Robotics and Automation, Anchorage Convention District, May 3-8, 2010, Anchorage, Alaska, USA, pp. 1100-1101, 2010.
[12]  A. GMITERKO, M. DOVICA, M. KELEMEN, V. FEDÁK, Z. MLÝNKOVA, In-Pipe Bristled Micromachine, In Proc. of 7th Int. Workshop on Advances Motion, Control July 3-2. 2002, Maribor. pp. 467-472, 2002.
[13]  H. YAGUCHI, T. IZUMIKAWA, Performance of cableless magnetic in-piping actuator capable of high-speed movement by means of inertial force, Advances in Mechanical Engineering, Vol. 2011, ID 485138 (2011), p. 1-9. 2011.
[14]  T. IZUMIKAWA, H. YAGUCHI, Novel Cableless Magnetic Actuator Capable of High-speed Locomotion in a Thin Pipe by Combination of Mechanical Vibration and Electromagnetic Force, Procedia Engineering, Vol. 29 (2012), p. 144-149, 2012.
[15]  T. MAŤAŠOVSKÁ, M. KELEMEN, Wheeled in-pipe micromachine – Fenaus, In Mechatronics, Robotics and Biomechanics 2003. Brno VUT, 2003, pp. 71-72. 2003.
[16]  J. BOCKO, M. KELEMEN, T. KELEMENOVÁ, J. JEZNÝ, Wheeled locomotion inside pipe, Bulletin of Applied Mechanics, Vol. 5, No. 18 (2009), pp. 34-36. 2009.
[17]  T. CEREVKA, Design pressure arm of the pipe robot for locomotion in the pipe with inside diameter over 100mm, In Winter Workshop of Applied Mechanics 2007: Prague, Czech Republic, February 16, 2007. Prague: CTU, 4 p. 2007.
[18]  J. RUSNÁK, T. CEREVKA, Real time measurement of the force generetad in deformed spiral spring, Acta Mechanica Slovaca, Vol. 12, No. 3-B (2008), pp. 677-690, 2008.
[19]  A. GMITERKO, M. KELEMEN, T. KELEMENOVÁ, L. MIKOVÁ, Adaptable Mechatronic Locomotion System, Acta Mechanica Slovaca. Vol. 14, No. 4 (2010), pp. 102-109. 2010.
[20]  VACKOVÁ, M. et all, Intelligent In-pipe Machine Adjustable to Inner Pipe Diameter, In SAMI 2012: 10th IEEE Jubilee International Symposium on Applied Machine Intelligence and Informatics: proceedings: Herľany, Slovakia, January 26-28, 2012. Budapest: IEEE, 2011. pp. 507-513. 2012.
[21]  F. DUCHON, P. HUBINSKÝ, J. HANZEL, A. BABINEC, M. TÖLGYESSY, Intelligent Vehicles as the Robotic Applications, Procedia Engineering, Volume 48, 2012, Pages 105-114. 2012.
[22]  P. Božek, Robot path optimization for spot welding applications in automotive industry, Tehnicki vjesnik / Technical Gazette. Sep/Oct2013, Vol. 20 Issue 5, p913-917. 5p.
[23]  F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, L. Jurišica, Path planning with modified A star algorithm for a mobile robot, Procedia Engineering 96, 59-69.
[24]  P. Pásztó, P. Hubinský, Mobile robot navigation based on circle recognition, Journal of Electrical Engineering 64 (2), 84-91.
[25]  I. V. Abramov, Y. R. Nikitin, A. I. Abramov, E. V. Sosnovich, P. Božek, Control and Diagnostic Model of Brushless DC Motor, Journal of Electrical Engineering. Volume 65, Issue 5, Pp 277-282, 2014.
[26]  D. Koniar, L. Hargaš, S. Štofan, Segmentation of Motion Regions for Biomechanical Systems, Procedia Engineering, Volume 48, 2012, Pages 304-311.