Journal of Automation and Control
ISSN (Print): 2372-3033 ISSN (Online): 2372-3041 Website: http://www.sciepub.com/journal/automation Editor-in-chief: Santosh Nanda
Open Access
Journal Browser
Go
Journal of Automation and Control. 2013, 1(1), 14-20
DOI: 10.12691/automation-1-1-3
Open AccessArticle

Exponential Observer for a Class of Exothermal Axial Dispersion Reactors

N. Barje1, , M. E. Achhab1 and V. Wertz2

1Department of Mathematics, Faculty of Sciences, Université Chouaib Doukkali, El Jadida, Morocco

2CESAME, Université Cathoulique de Louvain, Louvain-La-Neuve, Belgium

Pub. Date: September 25, 2013

Cite this paper:
N. Barje, M. E. Achhab and V. Wertz. Exponential Observer for a Class of Exothermal Axial Dispersion Reactors. Journal of Automation and Control. 2013; 1(1):14-20. doi: 10.12691/automation-1-1-3

Abstract

In this work, an exponential observer is performed for an exothermal axial dispersion tubular reactor that involves one nonlinear sequential reaction. More precisely, the given state estimator is performed by using bounded observations and properties of the nonlinear set of partial differential equations. It is shown that the proposed observer admits a global unique solution and ensures asymptotic state estimator with exponentially decay error, when the temperature is available for measurement at the reactor outlet only. This result is confirmed by a numerical simulation.

Keywords:
distributed parameter systems dissipativity exponential observer invariance nonlinear systems perturbed systems tubular reactors C0-semigroup

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 2

References:

[1]  D. Dochain, "Contribution to the analysis and control of distributed parameter systems with application to (bio)chemical processes and robotics". Ph. D. Thesis, Université Catholique de Louvain, Belgium 1994.
 
[2]  C. Antoniades, P. D. Christofides, "Studies on nonlinear dynamics and control of tubular reactor with recycle", Nonlinear Anal 47, 5933-5944, 2001.
 
[3]  I.Y. Smets, D. Dochain, J.F. Van Impe, "Optimal Temperature Control of a Steady-State Exothermic Plug-Flow Reactor", AIChE Journal, Vol. 48, No. 2, 279-286, 2002.
 
[4]  Y. Orlov, D. Dochain, "Discontinuous Feedback Stabilization of Minimum-Phase Semi linear Infinite-Dimensional Systems With Application to Chemical Tubular Reactor Models", IEEE Trans. Aut. Contr, vol. 47, 1293-1304, 2002.
 
[5]  D., Dochain, M. Perrier and B.E. Ydstie, "Asymptotic observers for stirred tank reactors". Chem. Eng. Sci., 47, 4167-4178, 1992.
 
[6]  M. Perrier, S. Feyo de Azevedo, E.C. Ferreira and D. Dochain, "Tuning of observer-based estimators: theory and application to the on-line estimation of kinetic parameters", Control Eng. Practice, 8, 377-388, 2000.
 
[7]  R. Miranda, I. Chairez, and J. Moreno, “Observer design for a class of parabolic PDE via sliding modes and backstepping”, in Proc. Int. Workshop Var. Struc. Syst., Mexico City, Mexico, pp. 215-220, Jun. 2010.
 
[8]  Z. Hidayat, R. Babuska, B. De Schutter, and A. Nunez, "Observers for linear distributed-parameter systems: A survey", Proceedings of the 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE 2011), Montreal, Canada, pp. 166-171, Sept. 2011.
 
[9]  M. Laabissi, M.E. Achhab, J. Winkin, D. Dochain, "Trajectory analysis of non-isothermal tubular reactor nonlinear models", Systems & Control Letters, 42, pp. 169-184, 2001.
 
[10]  R.H, Martin, "Nonlinear operators and differential equations in Banach spaces", John Wiley and Sons, 1976.
 
[11]  Pazy, A., "Semigroups of linear operators and applications to partial differential equations", Springer-Verlag, New York, 1983.
 
[12]  Curtain, R.F., J. Zwart, "An Introduction to Infinite Dimensional Linear Systems Theory", Springer. New York. 1995.
 
[13]  J. Winkin, D. Dochain, P. Ligarius, "Dynamical Analysis of Distributed Parameter Tubular Reactors", Automatica 36, 349-361, 2000.
 
[14]  R., NAGEL, "One-Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics", vol. 1184, Springer, New York, 1986.