Journal of Automation and Control
ISSN (Print): 2372-3033 ISSN (Online): 2372-3041 Website: Editor-in-chief: Santosh Nanda
Open Access
Journal Browser
Journal of Automation and Control. 2015, 3(3), 79-82
DOI: 10.12691/automation-3-3-8
Open AccessArticle

Machines for In-Pipe Inspection

Alexander Gmiterko1, Ivan Virgala1, Lubica Miková1, Peter Frankovský1, Tatiana Kelemenová1 and Michal Kelemen1,

1Department of Mechatronics, Technical University of Kosice, Faculty of Mechanical Engineering, Kosice, Slovak Republic

Pub. Date: December 15, 2015

Cite this paper:
Alexander Gmiterko, Ivan Virgala, Lubica Miková, Peter Frankovský, Tatiana Kelemenová and Michal Kelemen. Machines for In-Pipe Inspection. Journal of Automation and Control. 2015; 3(3):79-82. doi: 10.12691/automation-3-3-8


The paper deals with in-pipe machines based on directional friction and inertial stepping principle. Both type are developed for inner pipe with diameter 11 mm. The main purpose is inspection of inner pipe wall as prevention of cracks.

In-pipe machine locomotion insert template

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 9


[1]  Suzumori, K., Miyagawa, T., Kimura, M., and Hasegawa Y., (1999) “Micro Inspection Robot for 1-in Pipes”, IEEE/ASME Transactions on Mechatronics, Vol. 4, No. 3, September 1999, 286-292.
[2]  Hirose, S., Ohno, H., Mitsui, T., and Suyama, K., (1999) “Design of In-Pipe Inspection Vehicles for φ25, φ50, φ150 Pipes,” Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, Michigan, May 1999, pp2309-2314.
[3]  Roslin, N. S. et al. (2012) “A Review: Hybrid Locomotion of In-pipe Inspection Robot”, Procedia Engineering 41 (2012) 1456-1462.
[4]  A, Ma S. “Mobility of an in-pipe robot with screw drive mechanism inside curved pipes”. In: Proc. IEEE international conference on robotics and biomimetics. (); 2010. p. 1530-5.
[5]  Zhang, Y., Yan, G. (2007) “In-pipe inspection robot with active pipe-diameter adaptability and automatic tractive force adjusting”, Mechanism and Machine Theory 42 (2007) 1618-1631.
[6]  Jun, , , Zongquan, D., (2011) “Design method of Modular Units for Articulated in-Pipe Robot Inspecting System”, 2011 IEEE Second International Conference on Digital Manufacturing & Automation, 389-392.
[7]  Lee, D., Park, J., Hyun, D., Yook, G., Yang, H., (2012) “Novel mechanisms and simple locomotion strategies for an in-pipe robot that can inspect various pipe types”, Mechanism and Machine Theory 56 (2012) 52-68.
[8]  Lim, J., Park, H., Moon S., and Kim B., (2007), “Pneumatic Robot Based on Inchworm Motion for Small Diameter Pipe Inspection”, Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, December 15-18, 2007, Sanya, China, 330-335.
[9]  Kuwada, A., Tsujino, K., Suzumori, K., Kanda, T., (2006), “Intelligent Actuators Realizing Snake-like Small Robot for Pipe Inspection”, Proc. of International Symposium on Micro-NanoMechatronics and Human Science, 2006, , 1-6.
[10]  Liu, W. et al. (2010) “An in-pipe wireless swimming microrobot driven by giant magnetostrictive thin film”, Sensors and Actuators A 160 (2010) 101-108/ Wei Liu, Xinghua Jia, Fuji Wang, Zhenyuan Jia.
[11]  Hayashi, , Iwatsuki, N." and Iwashina, S., (1995) “The Running Characteristics of a Screw-Principle Microrobot in a Small Bent Pipe”, Proc. of Sixth International Symposium on Micro Machine and Human Science 1995, 225-228.
[12]  Jong-Hoon, K., Sharma, G. ; Iyengar, S.S. (2010) “FAMPER: A fully autonomous mobile robot for pipeline exploration”. 2010 IEEE International Conference on Industrial Technology (ICIT), Vina del Mar, 14-17 March 2010, p. 517-523.
[13]  Bertetto AM, Ruggiu M., “In-pipe inch-worm pneumatic flexible robot”. In: Proc. IEEE/ASME international conference on advanced intelligent mechatronics, vol. 2. ; 2001. p. 1226-31.
[14]  Qiao, J, Shang, J, Goldenberg, A., “Development of inchworm in-pipe robot based on self-locking mechanism”. IEEE/ASME Transactions on Mechatronics, Digital Object Identifier 10, 1109/TMECH; 2012s.
[15]  Takahashi, M., Hayashi, , Iwatsuki, N., Suzumori, K., and Ohki, N., “The development of an in-pipe microrobot applying the motion of an earthworm,” in Proc. IEEE 5th Int. Symp. Micro Machine and Human Sciences, 1994, pp. 35-40.
[16]  Neubauer, W., “Locomotion with articulated legs in pipes or dusts,” Robot. Autonomous Syst., vol. 11, nos. 3-4, pp. 163-169, 1993.
[17]  Idogaki, T., “Characteristics of piezoelectric locomotive mechanism for an in-pipe micro inspection machine”. Proc. of MHS’95, p.193-198. .
[18]  Aoschima, S., Tsujimuri, T., Yabuta, T., (1989) “Design and analysis of a midget mobile robot using piezo vibration for mobility in a thin tube”. Proc. of the International Conference on Advanced Mechatronics, , 1989, p. 659-663.
[19]  Fukuda, T. et al., “Giant magnetostrictive alloy (GMA) applications to micro mobile robot as a micro actuator without power supply cables,” in Proc. IEEE Int. Workshop Micro Electro Mechanical Systems (MEMS), Jan. 1991, pp. 210-215.
[20]  Degani, A., Feng, S., Choset, H., and Mason, M. T., “Minimalistic, Dynamic, Tube Climbing Robot”, Proc. of 2010 IEEE Int. Conf. on Robotics and Automation, Anchorage Convention District, May 3-8, 2010, Anchorage, Alaska, USA. (2010) 1100-1101.
[21]  Ostertag, O., Ostertagová, E., Kelemen, M., Kelemenová, T., Buša, J., and Virgala, I., (2014) “Miniature Bristled In-Pipe Machine”, Int J Adv Robot Syst, 2014, 11:189.
[22]  Yum, Y.J., Hwang, H.S., Kelemen, M., Maxim, V., and Frankovský, P. (2014) “In-pipe micromachine locomotion via the inertial stepping principle”, Journal of Mechanical Science and Technology 28 (8) (2014), 3237-3247.
[23]  Vitko, A., Jurišica, L., Kľúčik, M., Duchoň, F., (2008) “Context Based Intelligent Behaviour of Mechatronic Systems”, Acta Mechanica Slovaca. Vol. 12, No. 3-B. pp. 907-916.
[24]  Koniar, D., Hargaš, L., Hrianka, M., “The application of DICOM 7th standard in LabView”, Proc. of Biom. , Kladno (2007).
[25]  Dekan, M., Duchoň, F., Jurišica, L., Vitko, A., Babinec, A., “iRobot Create Used in Education”, Journal of Mechanics Engineering and Automation. - Vol. 3, Iss. 4, 2013, pages 197-202, (2013).
[26]  Kelemenova, T. et al. (2012) “Bristled In-pipe Machine Inside Pipe With Geometric Deviations”, Procedia Engineering, Elsevier, Volume 48, 2012, Pages 287-294. 852, 282-287.
[27]  Kelemen M., Virgala I., Miková Ľ., Frankovský P., Experimental Identification of Linear Actuator Properties, Acta Mechanica Slovaca. Volume 19, Issue 1, Pages 42-47.
[28]  Hargaš, L., Hrianka, M., Koniar, D., and Izák, P., “Quality Assessment SMT Technology by Virtual Instrumentation”, Applied Electronics 2007, Pilsen, 5. – 6. 9. 2007, (2007).