Applied Mathematics and Physics
ISSN (Print): 2333-4878 ISSN (Online): 2333-4886 Website: http://www.sciepub.com/journal/amp Editor-in-chief: Vishwa Nath Maurya
Open Access
Journal Browser
Go
Applied Mathematics and Physics. 2014, 2(3), 94-102
DOI: 10.12691/amp-2-3-5
Open AccessResearch Article

Towards Superluminal Physics: Compromising Einstein's Special Relativity and Faster-Than-Light Particles

Lukasz Andrzej Glinka1,

1B.M. Birla Science Centre, Hyderabad, India

Pub. Date: June 09, 2014
(This article belongs to the Special Issue Towards New Cosmology from Quantum Gravity & Particle Physics)

Cite this paper:
Lukasz Andrzej Glinka. Towards Superluminal Physics: Compromising Einstein's Special Relativity and Faster-Than-Light Particles. Applied Mathematics and Physics. 2014; 2(3):94-102. doi: 10.12691/amp-2-3-5

Abstract

Throughout the violation of momentum-velocity parallelism and deformation of the Einstein equivalence principle, the model of faster- than-light motion, wherein both the Minkowski energy-momentum space and the Lorentz invariance, laying the foundations of Special Relativity and Standard Model, is constructed. Recently announced and denounced CERN's superluminal neutrinos are confronted.

Keywords:
special relativity deformed relativity faster-than-light particles superluminal motion neutrino Lorentz symmetry

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  OPERA Collaboration (2011). Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. arXiv: 1109.4897v1.
 
[2]  CERN (2011). OPERA experiment reports anomaly in ight time of neutrinos from CERN to Gran Sasso. September 23, 2011.
 
[3]  Cartlidge, E. (2012). Breaking News: Error Undoes Faster-Than-Light Neutrino Results. Science Insider, February 22, 2012.
 
[4]  Reich, E.S. (2012). Flaws found in faster-than-light neutrino measure- ment. Nature News.
 
[5]  ICARUS Collaboration (2012). Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam. arXiv: 1203. 3433, Phys. Lett. B 713 (1), 17-22.
 
[6]  CERN (2012). Neutrinos sent from CERN to Gran Sasso respect the cosmic speed limit. June 8, 2012.
 
[7]  Bilaniuk, O.M.P., Deshpande, V.K. & Sudarshan, E.C.G. (1962). "Meta" Relativity. Amer. J. Phys. 30, 718-723.
 
[8]  Feinberg, G. (1967). Possibility of Faster-Than-Light Particles. Phys. Rev. 159(5), 1089-1105.
 
[9]  Sudarshan, E.C.G. (1968). Theory of Particles Travelling Faster-Than- Light. Syracuse University Report.
 
[10]  Sudarshan, E.C.G. (1968). The Nature of Faster-Than-Light Particles and Their Interactions. Delhi University Report.
 
[11]  Bilaniuk, O.M., Brown, S.L., DeWitt, B., Necomb, W.A., Sachs, M., Sudarshan, E.C.G. & Yoshikawa, S. (1969). More About Tachyones. Physics Today 22 (12), 47-52.
 
[12]  Bilaniuk, O.M. & Sudarshan, E.C.G. (1969). Particles Beyond the Light Barrier. Physics Today 22 (5), 43-51.
 
[13]  Camenzind, M. (1970). Relativity and Free Tachyons. Gen. Rel. Grav. 1 (1), 41-62.
 
[14]  Csonka, P.L. (1970). Causality and Faster than Light Particles. Nucl. Phys. B21, 436-444.
 
[15]  Feinberg, G. (1970). Particles that go faster than light. Scientific American 222 (2), 69-76.
 
[16]  Fitzgerald, P. (1970). Tachyons, Backwards Causation and Freedom. Boston Studies in the Philosophy of Science 8, 415-436.
 
[17]  Newton, R.G. (1970). Particles that Travel Faster than Light?. Science 167, 1659-1574.
 
[18]  Fitzgerald, P. (1974). On Retrocausality. Philosophia 4, 513-551.
 
[19]  Kirzhnitz, D.A. & Sazonov, V.N. (1974). Superluminal Motions and Special Relativity Theory (in Russian), in Einsteinovskii Sbornik 1973 ed. by V.L. Ginzburg, Nauka, Moscow, USSR, pp. 84-111.
 
[20]  Stinner, A. & Winchester, I. (1981). The physics of Star Trek. New Scientist 24 (3), 884-887.
 
[21]  Chapman, T. (1982). Time: Philosophical Analysis. Springer, New York, USA.
 
[22]  Fayngold, M. (2002). Special Relativity and Motions Faster than Light. Wiley-VCH, Weinheim, Germany.
 
[23]  Scheck, F. (2012). Classical Field Theory. On Electrodynamics, Non- Abelian Gauge Theories and Gravitation, Springer, Berlin-Heidelberg, Germany.
 
[24]  mNagashima, Y. (2010). Elementary Particle Physics.Volume 1: Quan- tum Field Theory and Particles, Wiley-VCH, Weinheim, Germany.
 
[25]  Huang. K (2007). Fundamental Forces of Nature: The Story of Gauge Fields. World Scientific, Singapore.
 
[26]  Wiedemann, H. (2007). Particle Accelerator Physics. 3rd ed., Springer, Berlin-Heidelberg, Germany.
 
[27]  Zeidler, E. (2006). Quantum Field Theory I: Basics in Mathematics and Physics. A Bridge between Mathematicians and Physicists. Springer, Berlin-Heidelberg, Germany.
 
[28]  Guidry, M. (2004). Gauge Field Theories: An Introduction with Appli- cations. Wiley-VCH, Weinheim, Germany.
 
[29]  Sexl, R.U. & Urbantke, H.K. (2001). Relativity, Groups, Particles: Spe- cial Relativity and Relativistic Symmetry in Field and Particle Physics. Springer, Wien, Austria.
 
[30]  Perkins, D.H. (2000). Introduction to High Energy Physics. Cambridge University Press, Cambridge, UK.
 
[31]  Martin, B.R. & Shaw, G. (1997). Particle Physics. 2nd ed., John Wiley & Sons, Chichester, UK.
 
[32]  Weinberg, S. (1995). The Quantum Theory of Fields. Vol. I Foundations. Cambridge University Press, Cambridge, UK. Rosser, W.G.V. (1969). Relativity and High Energy Physics. Wykeham Publications, London, UK.
 
[33]  Hagedorn, R. (1964). Relativistic Kinematics: A Guide to Kinematic Problems of High Energy Physics. W.A. Benjamin, New York, USA.
 
[34]  Larson, R. & Edwards, B.H. (2010). Calculus, Ninth Edition. Brooks/Cole, Cengage Learning, Belmont, USA.
 
[35]  Giaquinta, M. & Modica, G. (2009). Mathematical Analysis: An Intro- duction to Functions of Several Variables. Birkhauser, New York, USA.
 
[36]  Kaplan, W. (2003). Advanced Calculus. 5th ed., Pearson Education, New Jersey, USA.
 
[37]  Cheney, W. (2001). Analysis for Applied Mathematics. Springer, New York, USA.
 
[38]  Grillet, P.A. (2007). Abstract Algebra, 2nd ed., Springer, New York, USA.
 
[39]  Vinberg, E.B. (2003). A Course in Algebra. American Mathematical Society, Providence, USA.
 
[40]  Tignol, J.-P. (2001). Galois' Theory of Algebraic Equations. World Scientific, Singapore.
 
[41]  Einstein, A. (1921). Relativity. The Special and General Theory. Henry Holt and Company, New York, USA.
 
[42]  Lorentz, H.A., Einstein, A., Minkowski, H. & Weyl, H. (1952). The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. Dover, USA.
 
[43]  Pauli, W. (1958). Theory of Relativity. Pergamon Press, London, UK.
 
[44]  Fock, V. (1959). The Theory of Space Time and Gravitation. Pergamon Press, London, UK.
 
[45]  Weinberg, S. (1972). Gravitation and Cosmology: Principles and Appli- cations of the General Theory of Relativity. John Wiley & Sons, New York, USA.
 
[46]  D'Inverno, R. (1998). Introducing Einstein's Relativity. Oxford University Press, Oxford, UK.
 
[47]  Schwarz, P.M. & Schwarz, J.H. (2004). Special Relativity: From Einstein to Strings. Cambridge University Press, Cambridge, UK.
 
[48]  Stephani, H. (2004). Relativity: An Introduction to Special and General Relativity. 3rd ed., Cambridge University Press, Cambridge, UK.
 
[49]  Ehlers, J. & Lammerzahl, C. (Eds.) (2006). Special Relativity. Will it Survive the Next 101 Years?. Springer, Berlin-Heidelberg, Germany.
 
[50]  Rindler, W. (2006). Relativity: Special, General and Cosmological. 2nd ed., Oxford University Press, New York, USA.
 
[51]  Ferraro, R. (2007). Einstein'S Space-Time: An Introduction to Special and General Relativity. Springer, New York, USA.
 
[52]  Kobayashi, M. (2009). CP Violation and Flavor Mixing. Prog. Theor. Phys. 122 (1), 1-13.
 
[53]  Rev. Mod. Phys. 81, 1019-1025.
 
[54]  Maskawa, T. (2009).What does CP violation tell us?. Prog. Theor. Phys. 122 (1), 15-21.
 
[55]  Rev. Mod. Phys. 81, 1027-1030.
 
[56]  Beyer, M. (Ed.) (2002). CP Violation in Particle, Nuclear and Astro- physics. Springer, Berlin-Heidelberg, Germany.
 
[57]  Bigi, I.I. & Sanda, A.I. (2009). CP Violation. 2nd ed., Cambridge University Press, Cambridge, UK.
 
[58]  Branco, G.C., Lavoura, L. & Silva, J.P. (1999). CP Violation. Oxford University Press, New York, USA.
 
[59]  Ginzburg, I.F. & Krawczyk, M. (2005). Symmetries of two Higgs doublet model and CP violation. Phys. Rev. D 72, 115013.
 
[60]  Glinka, L.A. (2012). thereal Multiverse: A New Unifying Theoretical Approach to Cosmology, Particle Physics, and Quantum Gravity, Cambridge International Science Publishing, Great Abington, UK.
 
[61]  Glinka, L.A. (2010). CP violation, massive neutrinos, and its chiral con- densate: new results from Snyder noncommutative geometry. Apeiron 17 (4), 223-242.
 
[62]  Kleinknecht, K. (2003). Uncovering CP Violation: Experimental Clarication in the Neutral K Meson and B Meson Systems. Springer, Berlin- Heidelberg, Germany.
 
[63]  Koranga, B.S. (2011). CP Violation in Neutrino Oscillation Due to Planck Scale E_ects. Int. J. Theor. Phys. 50 (1), 35-41.
 
[64]  Leader, E. & Predazzi, E. (1996). An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-violation, QCD and hard processes. Cambridge University Press, Cambridge, UK.
 
[65]  Maccione, L., Taylor, A.M., Mattingly, D.M. & Liberati, S. (2009). Planck-scale Lorentz violation constrained by Ultra-High-Energy CosmicRays. JCAP 04, 022.
 
[66]  Sanda, A.I. (2009). The Road to the Discovery of Large CP Violation inB Decays. Prog. Theor. Phys. 122 (1), 103-123.
 
[67]  Sozzi, M.S. (2008). Discrete Symmetries and CP Violation: From Ex-periment to Theory. Oxford University Press, New York, USA.