Applied Mathematics and Physics
ISSN (Print): 2333-4878 ISSN (Online): 2333-4886 Website: Editor-in-chief: Vishwa Nath Maurya
Open Access
Journal Browser
Applied Mathematics and Physics. 2014, 2(3), 94-102
DOI: 10.12691/amp-2-3-5
Open AccessResearch Article

Towards Superluminal Physics: Compromising Einstein's Special Relativity and Faster-Than-Light Particles

Lukasz Andrzej Glinka1,

1B.M. Birla Science Centre, Hyderabad, India

Pub. Date: June 09, 2014
(This article belongs to the Special Issue Towards New Cosmology from Quantum Gravity & Particle Physics)

Cite this paper:
Lukasz Andrzej Glinka. Towards Superluminal Physics: Compromising Einstein's Special Relativity and Faster-Than-Light Particles. Applied Mathematics and Physics. 2014; 2(3):94-102. doi: 10.12691/amp-2-3-5


Throughout the violation of momentum-velocity parallelism and deformation of the Einstein equivalence principle, the model of faster- than-light motion, wherein both the Minkowski energy-momentum space and the Lorentz invariance, laying the foundations of Special Relativity and Standard Model, is constructed. Recently announced and denounced CERN's superluminal neutrinos are confronted.

special relativity deformed relativity faster-than-light particles superluminal motion neutrino Lorentz symmetry

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  OPERA Collaboration (2011). Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. arXiv: 1109.4897v1.
[2]  CERN (2011). OPERA experiment reports anomaly in ight time of neutrinos from CERN to Gran Sasso. September 23, 2011.
[3]  Cartlidge, E. (2012). Breaking News: Error Undoes Faster-Than-Light Neutrino Results. Science Insider, February 22, 2012.
[4]  Reich, E.S. (2012). Flaws found in faster-than-light neutrino measure- ment. Nature News.
[5]  ICARUS Collaboration (2012). Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam. arXiv: 1203. 3433, Phys. Lett. B 713 (1), 17-22.
[6]  CERN (2012). Neutrinos sent from CERN to Gran Sasso respect the cosmic speed limit. June 8, 2012.
[7]  Bilaniuk, O.M.P., Deshpande, V.K. & Sudarshan, E.C.G. (1962). "Meta" Relativity. Amer. J. Phys. 30, 718-723.
[8]  Feinberg, G. (1967). Possibility of Faster-Than-Light Particles. Phys. Rev. 159(5), 1089-1105.
[9]  Sudarshan, E.C.G. (1968). Theory of Particles Travelling Faster-Than- Light. Syracuse University Report.
[10]  Sudarshan, E.C.G. (1968). The Nature of Faster-Than-Light Particles and Their Interactions. Delhi University Report.
[11]  Bilaniuk, O.M., Brown, S.L., DeWitt, B., Necomb, W.A., Sachs, M., Sudarshan, E.C.G. & Yoshikawa, S. (1969). More About Tachyones. Physics Today 22 (12), 47-52.
[12]  Bilaniuk, O.M. & Sudarshan, E.C.G. (1969). Particles Beyond the Light Barrier. Physics Today 22 (5), 43-51.
[13]  Camenzind, M. (1970). Relativity and Free Tachyons. Gen. Rel. Grav. 1 (1), 41-62.
[14]  Csonka, P.L. (1970). Causality and Faster than Light Particles. Nucl. Phys. B21, 436-444.
[15]  Feinberg, G. (1970). Particles that go faster than light. Scientific American 222 (2), 69-76.
[16]  Fitzgerald, P. (1970). Tachyons, Backwards Causation and Freedom. Boston Studies in the Philosophy of Science 8, 415-436.
[17]  Newton, R.G. (1970). Particles that Travel Faster than Light?. Science 167, 1659-1574.
[18]  Fitzgerald, P. (1974). On Retrocausality. Philosophia 4, 513-551.
[19]  Kirzhnitz, D.A. & Sazonov, V.N. (1974). Superluminal Motions and Special Relativity Theory (in Russian), in Einsteinovskii Sbornik 1973 ed. by V.L. Ginzburg, Nauka, Moscow, USSR, pp. 84-111.
[20]  Stinner, A. & Winchester, I. (1981). The physics of Star Trek. New Scientist 24 (3), 884-887.
[21]  Chapman, T. (1982). Time: Philosophical Analysis. Springer, New York, USA.
[22]  Fayngold, M. (2002). Special Relativity and Motions Faster than Light. Wiley-VCH, Weinheim, Germany.
[23]  Scheck, F. (2012). Classical Field Theory. On Electrodynamics, Non- Abelian Gauge Theories and Gravitation, Springer, Berlin-Heidelberg, Germany.
[24]  mNagashima, Y. (2010). Elementary Particle Physics.Volume 1: Quan- tum Field Theory and Particles, Wiley-VCH, Weinheim, Germany.
[25]  Huang. K (2007). Fundamental Forces of Nature: The Story of Gauge Fields. World Scientific, Singapore.
[26]  Wiedemann, H. (2007). Particle Accelerator Physics. 3rd ed., Springer, Berlin-Heidelberg, Germany.
[27]  Zeidler, E. (2006). Quantum Field Theory I: Basics in Mathematics and Physics. A Bridge between Mathematicians and Physicists. Springer, Berlin-Heidelberg, Germany.
[28]  Guidry, M. (2004). Gauge Field Theories: An Introduction with Appli- cations. Wiley-VCH, Weinheim, Germany.
[29]  Sexl, R.U. & Urbantke, H.K. (2001). Relativity, Groups, Particles: Spe- cial Relativity and Relativistic Symmetry in Field and Particle Physics. Springer, Wien, Austria.
[30]  Perkins, D.H. (2000). Introduction to High Energy Physics. Cambridge University Press, Cambridge, UK.
[31]  Martin, B.R. & Shaw, G. (1997). Particle Physics. 2nd ed., John Wiley & Sons, Chichester, UK.
[32]  Weinberg, S. (1995). The Quantum Theory of Fields. Vol. I Foundations. Cambridge University Press, Cambridge, UK. Rosser, W.G.V. (1969). Relativity and High Energy Physics. Wykeham Publications, London, UK.
[33]  Hagedorn, R. (1964). Relativistic Kinematics: A Guide to Kinematic Problems of High Energy Physics. W.A. Benjamin, New York, USA.
[34]  Larson, R. & Edwards, B.H. (2010). Calculus, Ninth Edition. Brooks/Cole, Cengage Learning, Belmont, USA.
[35]  Giaquinta, M. & Modica, G. (2009). Mathematical Analysis: An Intro- duction to Functions of Several Variables. Birkhauser, New York, USA.
[36]  Kaplan, W. (2003). Advanced Calculus. 5th ed., Pearson Education, New Jersey, USA.
[37]  Cheney, W. (2001). Analysis for Applied Mathematics. Springer, New York, USA.
[38]  Grillet, P.A. (2007). Abstract Algebra, 2nd ed., Springer, New York, USA.
[39]  Vinberg, E.B. (2003). A Course in Algebra. American Mathematical Society, Providence, USA.
[40]  Tignol, J.-P. (2001). Galois' Theory of Algebraic Equations. World Scientific, Singapore.
[41]  Einstein, A. (1921). Relativity. The Special and General Theory. Henry Holt and Company, New York, USA.
[42]  Lorentz, H.A., Einstein, A., Minkowski, H. & Weyl, H. (1952). The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. Dover, USA.
[43]  Pauli, W. (1958). Theory of Relativity. Pergamon Press, London, UK.
[44]  Fock, V. (1959). The Theory of Space Time and Gravitation. Pergamon Press, London, UK.
[45]  Weinberg, S. (1972). Gravitation and Cosmology: Principles and Appli- cations of the General Theory of Relativity. John Wiley & Sons, New York, USA.
[46]  D'Inverno, R. (1998). Introducing Einstein's Relativity. Oxford University Press, Oxford, UK.
[47]  Schwarz, P.M. & Schwarz, J.H. (2004). Special Relativity: From Einstein to Strings. Cambridge University Press, Cambridge, UK.
[48]  Stephani, H. (2004). Relativity: An Introduction to Special and General Relativity. 3rd ed., Cambridge University Press, Cambridge, UK.
[49]  Ehlers, J. & Lammerzahl, C. (Eds.) (2006). Special Relativity. Will it Survive the Next 101 Years?. Springer, Berlin-Heidelberg, Germany.
[50]  Rindler, W. (2006). Relativity: Special, General and Cosmological. 2nd ed., Oxford University Press, New York, USA.
[51]  Ferraro, R. (2007). Einstein'S Space-Time: An Introduction to Special and General Relativity. Springer, New York, USA.
[52]  Kobayashi, M. (2009). CP Violation and Flavor Mixing. Prog. Theor. Phys. 122 (1), 1-13.
[53]  Rev. Mod. Phys. 81, 1019-1025.
[54]  Maskawa, T. (2009).What does CP violation tell us?. Prog. Theor. Phys. 122 (1), 15-21.
[55]  Rev. Mod. Phys. 81, 1027-1030.
[56]  Beyer, M. (Ed.) (2002). CP Violation in Particle, Nuclear and Astro- physics. Springer, Berlin-Heidelberg, Germany.
[57]  Bigi, I.I. & Sanda, A.I. (2009). CP Violation. 2nd ed., Cambridge University Press, Cambridge, UK.
[58]  Branco, G.C., Lavoura, L. & Silva, J.P. (1999). CP Violation. Oxford University Press, New York, USA.
[59]  Ginzburg, I.F. & Krawczyk, M. (2005). Symmetries of two Higgs doublet model and CP violation. Phys. Rev. D 72, 115013.
[60]  Glinka, L.A. (2012). thereal Multiverse: A New Unifying Theoretical Approach to Cosmology, Particle Physics, and Quantum Gravity, Cambridge International Science Publishing, Great Abington, UK.
[61]  Glinka, L.A. (2010). CP violation, massive neutrinos, and its chiral con- densate: new results from Snyder noncommutative geometry. Apeiron 17 (4), 223-242.
[62]  Kleinknecht, K. (2003). Uncovering CP Violation: Experimental Clarication in the Neutral K Meson and B Meson Systems. Springer, Berlin- Heidelberg, Germany.
[63]  Koranga, B.S. (2011). CP Violation in Neutrino Oscillation Due to Planck Scale E_ects. Int. J. Theor. Phys. 50 (1), 35-41.
[64]  Leader, E. & Predazzi, E. (1996). An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-violation, QCD and hard processes. Cambridge University Press, Cambridge, UK.
[65]  Maccione, L., Taylor, A.M., Mattingly, D.M. & Liberati, S. (2009). Planck-scale Lorentz violation constrained by Ultra-High-Energy CosmicRays. JCAP 04, 022.
[66]  Sanda, A.I. (2009). The Road to the Discovery of Large CP Violation inB Decays. Prog. Theor. Phys. 122 (1), 103-123.
[67]  Sozzi, M.S. (2008). Discrete Symmetries and CP Violation: From Ex-periment to Theory. Oxford University Press, New York, USA.