Applied Mathematics and Physics
ISSN (Print): 2333-4878 ISSN (Online): 2333-4886 Website: Editor-in-chief: Vishwa Nath Maurya
Open Access
Journal Browser
Applied Mathematics and Physics. 2014, 2(3), 82-93
DOI: 10.12691/amp-2-3-4
Open AccessResearch Article

Objective Quantum Gravity, Its Possible Relation to Gauge Theories and Strings

Lukasz Andrzej Glinka1,

1B.M. Birla Science Centre, Hyderabad, India

Pub. Date: June 09, 2014
(This article belongs to the Special Issue Towards New Cosmology from Quantum Gravity & Particle Physics)

Cite this paper:
Lukasz Andrzej Glinka. Objective Quantum Gravity, Its Possible Relation to Gauge Theories and Strings. Applied Mathematics and Physics. 2014; 2(3):82-93. doi: 10.12691/amp-2-3-4


In this paper the model of quantum gravity for the higher dimensional Lorentzian space-times, in the sense of the analogy with the Arnowitt–Deser–Misner decomposition well-known from General Relativity, is presented. The model is constructed through making use of the quantum geometrodynamics supplemented by the global onedimensionality conjecture, and considers the objective wave functionals. The framework of quantum field theory is applied in order to establish the phenomenological efficiency in accordance with high energy physics. The empirical deductions on the spatial dimensionality are presented as the relationship between the model and gauge theories, especially string theory.

quantum gravity quantum geometrodynamics global one-dimensionality conjecture objective functions spatial dimension string theory Arnowitt–Deser–Misner decomposition

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Giulini, D. & Kiefer, C. (2007). The Canonical Ap- proach to Quantum Gravity: General Ideas and Geometrodynamics, In: Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas, I.-O. Stamatescu and E. Seiler, (Eds.), Lect. Notes Phys. 721, pp. 131-150, Springer, New York.
[2]  Kiefer, C. (2009). Quantum geometrodynamics: whence, whither?. Gen. Rel. Grav. 41, (2009) 877-901.
[3]  ’t Hooft, G. & Veltman, M.J.G. (1973). Dia- grammar, CERN, Geneva.
[4]  Veltman, M.J.G. (1976). Quantum Theory of Gravitation, In: Methods in Field Theory. Proc. Les Houches, Session XXVIII, R. Balian and J. Zinn-Justin, (Eds.), pp. 265-328, North Holland, Ams- terdam.
[5]  Bern, Z.; Carrasco, J.J.M. & Johansson, H. (2010). Per- turbative Quantum Gravity as a Double Copy of Gauge Theory. Phys. Rev. Lett. 105, (2010) 061602.
[6]  Wadia, S.R. (2008). String Theory: A Framework for Quan- tum Gravity and Various Applications. E-print: arXiv:0809.1036 [gr- qc].
[7]  Blau, M. & Theisen, S. (2009). String theory as a theory of quantum gravity: a status report. Gen. Rel. Grav. 41, (2009) 743-755.
[8]  Giddings, S.B. (2011). Is string theory a theory of quantum gravity?. E-print: arXiv:1105.6359 [hep-th].
[9]  Ashtekar, A. (2007). An Introduction to Loop Quantum Gravity Through Cosmology. Nuovo Cim. B 122, (2007) 135-155.
[10]  Perez, A. (2009). Loop quantum gravity: An introduction. AIP Conf. Proc. 1132, (2009) 386-428.
[11]  Domagala, M; Giesel, K.; Kaminski, W. & Lewandowski, J. (2010). Gravity quantized: Loop Quantum Gravity with a Scalar Field. Phys. Rev. D 82, (2010) 104038.
[12]  Rovelli, C. (2011). Loop quantum gravity: the first twenty five years. Class. Quant. Grav. 28, (2011) 153002. —– (2011). A new look at loop quantum gravity. Class. Quant. Grav. 28, (2011) 114005.
[13]  Oriti, D. (Ed.) (2009). Approaches To Quantum Gravity. To- ward A New Understanding Of Space, Time And Matter, Cambridge University Press, Cambridge.
[14]  Wheeler, J.A. (1957). On the Nature of Quantum Ge- ometrodynamics. Ann. Phys. 2, (1957) 604-614. —– (1962). Geometrodynamics, Academic Press, New York. —– (1964). Geometrodynamics and the Issue of the Final State, In: Relativity, Groups, and Topology. Lectures Delivered at Les Houches During the 1963 Session of the Summer School of Theoretical Physics, University of Grenoble, C. DeWitt and B. DeWitt, (Eds.), pp. 317-501, Gordon and Breach, New York. —– (1968). Superspace and the Nature of Quantum Geometrodynam- ics, In: Battelle Rencontres. 1967 Lectures in Mathematics and Physics, C.M. DeWitt and J.A. Wheeler, (Eds.), pp. 242-308, W.A. Benjamin, New York. —– (1968). Einsteins Vision, Springer-Verlag, New York. —– (1970). Superspace, In: Analytic Methods in Mathematical Physics, R.P. Gilbert and R. Newton, (Eds.), pp. 335-378, Gordon and Breach, New York.
[15]  DeWitt, B.S. (1967). Quantum Theory of Gravity I. The Canonical Theory. Phys. Rev. 160, (1967) 1113-1148. —– (1967). Quantum Theory of Gravity II. The Manifestly Covariant Theory. Phys. Rev. 160, (1967) 1195-1239. —– (1967). Quantum Theory of Gravity III. Applications of the Co- variant Theory. Phys. Rev. 160, (1967) 1239-1256.
[16]  Dirac, P.A.M. (1964). Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University. —– (1959). Fixation of Coordinates in the Hamiltonian Theory of Grav- itation, Phys. Rev. 114, (1959) 924-930. —– (1959). Energy of the Gravitational Field. Phys. Rev. Lett. 2, (1959) 368-371.– (1958). Generalized Hamiltonian Dynamics. Proc. R. Soc. A 246, (1958) 326-332. —– (1958). The Theory of Gravitation in Hamiltonian Form. Proc. R. Soc. A 246, (1958) 333-343. —– (1950). Generalized Hamiltonian Dynamics. Can. J. Math. 2, (1950) 129-148. —– (1949). Forms of Relativistic Dynamics. Rev. Mod. Phys 21, (1949) 392-399.
[17]  Arnowitt, R.; Deser, S. & Misner, C.W. (1961). The Dynamics of General Relativity, In: Gravitation: an introduction to current research, L. Witten, (Ed.), pp. 227-265, John Wiley & Sons, New York.
[18]  Hartle, J.B. & Hawking, S.W. (1983). Wave func- tion of the Universe. Phys. Rev. D 28, (1983) 2960-2975.
[19]  Halliwell, J.J. & Hawking, S.W. (1985). Origin of structure of the Universe. Phys. Rev. D 31, (1985) 1777-1791.
[20]  Coleman, S.; Hartle, J.B.; Piran, T. & Weinberg, S. (Eds.) (1991), Quantum Cosmology and Baby Universes, World Scien- tific, Singapore.
[21]  Hartle, J.B.; Hawking, S.W. & Hertog T. (2008). Clas- sical universes of the no-boundary quantum state. Phys. Rev. D 77, (2008) 123537. —– (2008). No-Boundary Measure of the Universe. Phys. Rev. Lett. 100, (2008) 201301.
[22]  Glinka, L.A. (2007). Quantum Information from Graviton-Matter Gas. SIGMA 3, (2007) 087, 13 pages. —– (2007). Preliminaries in Many-Particle Quantum Gravity. Einstein– Friedmann Spacetime. E-print: arXiv:0711.1380 [gr-qc]. —– (2008). Multiparticle Quantum Cosmology, In: Frontiers of Fun- damental and Computational Physics. 9th International Symposium, Udine and Trieste, Italy 7-9 January 2008, B.G. Sidharth, F. Honsell, O. Mansutti, K. Sreenivasan, and A. De Angelis (Eds.), AIP Conf. Proc. 1018, (2008) 94-99, American Institute of Physics, New York. —– (2008). Quantum gravity as the way from spacetime to space quan- tum states thermodynamics. New Adv. Phys. 2, (2008) 1-62. —– (2008). 1D Global Bosonization of Quantum Gravity. E-print: arXiv:0804.3516 [gr-qc]. —– (2008). Many-Particle Quantum Cosmology, In: Supersymme- tries and Quantum Symmetries (SQS’07): Proceedings of International Workshop, held in Dubna, Russia, July 30 - August 4, 2007, E. Ivanov and S. Fedoruk (Eds.), pp. 406-411, J
[23]  Weinberg, S. (1972). Gravitation and Cosmology. Princi- ples and Applications of the General Theory of Relativity, John Wiley & Sons, New York.
[24]  Misner, C.W.; Thorne, K.S. & Wheeler, J.A. (1973). Gravitation, W.H. Freeman, San Francisco.
[25]  Landau, L.D. & Lifshitz, E.M. (1994). Course of Theoretical Physics, Vol 2. The Classical Theory of Fields, 4th English ed., Butterworth Heinemann, Amsterdam.
[26]  Carroll, S. (2004). Space-time and Geometry. An Introduction to General Relativity, Addison-Wesley, San Francisco.
[27]  Poisson, E. (2004). A Relativist’s Toolkit. The Mathematics of Black-Hole Mechanics, Cambridge University Press, Cambridge.
[28]  DeWitt, B. (2003). The Global Approach to Quantum Field Theory, Vols. 1-2, Int. Ser. Monogr. Phys. 114, Clarendon Press, Ox- ford.
[29]  Masahiro, S. (1987). Nash Manifolds, Lect. Notes Math. 1269, Springer, New York.
[30]  Giulini, D. (2009). The Superspace of geometrodynamics. Gen. Rel. Grav. 41, (2009) 785-815.
[31]  ’t Hooft, G. & Veltman, M. (1972). Regulariza- tion and renormalization of gauge fields. Nuclear Physics B 44, (1972) 189-213.
[32]  Glinka, L.A. (2012). Æthereal Multiverse: A New Unifying Theoretical Approach to Cosmology, Particle Physics, and Quantum Gravity, Cambridge International Science Publishing, Great Abington.