Applied Mathematics and Physics
ISSN (Print): 2333-4878 ISSN (Online): 2333-4886 Website: http://www.sciepub.com/journal/amp Editor-in-chief: Vishwa Nath Maurya
Open Access
Journal Browser
Go
Applied Mathematics and Physics. 2014, 2(3), 73-81
DOI: 10.12691/amp-2-3-3
Open AccessResearch Article

Novel Solution of Wheeler-DeWitt Theory

Lukasz Andrzej Glinka1,

1B.M. Birla Science Centre, Hyderabad, India

Pub. Date: June 09, 2014
(This article belongs to the Special Issue Towards New Cosmology from Quantum Gravity & Particle Physics)

Cite this paper:
Lukasz Andrzej Glinka. Novel Solution of Wheeler-DeWitt Theory. Applied Mathematics and Physics. 2014; 2(3):73-81. doi: 10.12691/amp-2-3-3

Abstract

Taking into account the global one-dimensionality conjecture recently proposed by the author, the Cauchy-like analytical wave functional of the Wheeler-DeWitt theory is derived. The crucial point of the integration strategy is canceling of the singular behavior of the effective potential, which is performed through the suitable change of variables introducing the invariant global dimension. In addition, the conjecture is extended onto the wave functionals dependent on both Matter felids as well as the invariant global dimension. Through application of the reduction within the quantum gravity model, the appropriate Dirac equation is obtained and than solved. The case of superposition is also briey discussed.

Keywords:
global one-dimensionality conjecture quantum gravity quantum geometrodynamics Wheeler-DeWitt equation Cauchy-like analytical wave functional

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  J. R. Klauder (ed.), Magic without magic: John Archibald Wheeler (Freeman, 1972).
 
[2]  C. J. Isham, R. Penrose, and D. W. Sciama (eds.), Quantum Gravity. An Oxford symposium (Oxford University Press, 1975).
 
[3]  R. Balian and J. Zinn-Justin (eds.), Methods in Field Theory. Les Houches, École D' Été De Physique Théorique. Session XXVIII (North-Holland, 1976).
 
[4]  C. J. Isham, R. Penrose, and D. W. Sciama (eds.), Quantum Gravity 2. A second Oxford symposium (Oxford University Press, 1981).
 
[5]  S. M. Christensen (ed.), Quantum Theory of Gravity. Essays in honor of the 60th birthday of Bryce S. DeWitt. (Adam Hilger, 1984).
 
[6]  R. Penrose and C. J. Isham (eds.), Quantum concepts in space and time (Oxford University Press, 1986).
 
[7]  M. A. Markov, V. A. Berezin, and V. P. Frolov (eds.), Quantum Gravity. Proceedings of the Fourth Seminar, May 25-29, 1987, Moscow, USSR (World Scientific, 1988).
 
[8]  J. Audretsch and V. de Sabbata (eds.), Quantum mechanics in curved space-time (Plenum Press, 1990).
 
[9]  A. Ashtekar and J. Stachel (eds.), Conceptual problems of quantum gravity (Birkhauser, 1991).
 
[10]  S. Coleman, J. B. Hartle, T. Piran, and S. Weinberg (eds.), Quantum Cosmology and baby Universes (World Scientific, 1991).
 
[11]  I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Effective Action in Quantum Gravity (Institute of Physics Publishing, 1992).
 
[12]  D. J. Gross, T. Piran, and S. Weinberg (eds.), Two Dimensional Quantum Gravity and Random Surfaces (World Scientific, 1992).
 
[13]  M. C. Bento, O. Bertolami, J. M. Mourão, and R. F. Picken (eds.), Classical and quantum gravity (World Scientific, 1993).
 
[14]  G. W. Gibbons and S. W. Hawking (eds.), Euclidean Quantum Gravity (World Scientific, 1993).
 
[15]  J. C. Baez (ed.), Knots and Quantum Gravity (Clarendon Press, 1994).
 
[16]  J. Ehlers and H. Friedrich (eds.), Canonical Gravity: From Classical to Quantum (Springer, 1994).
 
[17]  G. Esposito, Quantum Gravity, Quantum Cosmology and Lorentzian Geometries (Springer, 1994).
 
[18]  E. Prugovečki, Principles of Quantum General Relativity (World Scien- tific, 1995).
 
[19]  R. Gambini and J. Pullin, Loops, Knots, Gauge Theories and Quantum Gravity (Cambridge University Press, 1996).
 
[20]  G. Esposito, A. Yu. Kamenshchik, and G. Pollifrone, Euclidean Quan- tum Gravity on Manifolds with Boundary (Springer, 1997).
 
[21]  P. Fré, V. Gorini, G. Magli, and U. Moschella, Classical and Quantum Black Holes (Institute of Physics Publishing, 1999).
 
[22]  I. G. Avramidi, Heat Kernel and Quantum Gravity (Springer, 2000).
 
[23]  J. Kowalski-Glikman (ed.), Towards Quantum Gravity (Springer, 2000).
 
[24]  C. Callender and N. Huggett (eds.), Physics meets philosophy at the Planck scale. Contemporary theories in quantum gravity. (Cambridge University Press, 2001).
 
[25]  B. N. Kursunoglu, S. L. Mintz, and A. Perlmutter (eds.), Quantum Grav- ity, Generalized Theory of Gravitation and Superstring Theory-Based Unif ication (Kluwer Academic Press, 2002).
 
[26]  S. Carlip, Quantum Gravity in 2+1 Dimensions (Cambridge University Press, 2003).
 
[27]  G. W. Gibbons, E. P. S. Shellard, and S. J. Rankin (eds.), The Future of Theoretical Physics and Cosmology (Cambridge University Press, 2003).
 
[28]  D. Giulini, C. Kiefer, and C. Lämmerzahl (eds.), Quantum Gravity. From Theory To Experimental Search (Springer, 2003).
 
[29]  C. Rovelli, Quantum Gravity (Cambridge University Press, 2004).
 
[30]  G. Amelino-Camelia and J. Kowalski-Glikman (eds.), Planck Scale Ef- fects in Astrophysics and Cosmology (Springer, 2005).
 
[31]  A. Gomberoff and D. Marolf (eds.), Lectures on Quantum Gravity (Springer, 2005).
 
[32]  D. Rickles, S. French, and J. Saatsi (eds.), The Structural Foundations of Quantum Gravity (Clarendon Press, 2006).
 
[33]  B. Carr (ed.), Universe of Multiverse? (Cambridge University Press, 2007).
 
[34]  B. Fauser, J. Tolksdorf, and E. Zeidler (eds.) Quantum Gravity. Mathe- matical Models and Experimental Bounds (Birkh¨auser, 2007).
 
[35]  D. Gross, M. Henneaux, and A. Sevrin (eds.), The Quantum Structureof Space and Time (World Scientific, 2007).
 
[36]  C. Kiefer, Quantum Gravity (2nd ed., Oxford University Press, 2007).
 
[37]  T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, 2007).
 
[38]  D. Oriti, Approaches to Quantum Gravity. Toward a New Understanding of Space, Time, and Matter (Cambridge University Press, 2009).
 
[39]  S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
 
[40]  ibid. 55, 133 (1977).
 
[41]  Phys. Rev. D 13, 191 (1976).
 
[42]  ibid. 14, 2460 (1976).
 
[43]  ibid. 18, 1747 (1978).
 
[44]  ibid. 32, 259 (1985).
 
[45]  ibid. 37, 904 (1988).
 
[46]  Phys. Lett. B 134, 403 (1984).
 
[47]  Nucl. Phys. B 239, 257 (1984).
 
[48]  Phys. Scr. T 117, 49 (2005).
 
[49]  contributions in: S. W. Hawking and W. Israel (eds.), General Relativity: An Einstein centenary survey, pp. 746-785 (Cambridge Uni- versity Press, 1979).
 
[50]  M. Levy and S. Deser (eds.), Recent Developments in Gravitation. Cargese 1978, pp. 145-175 (Plenum Press, 1979).
 
[51]  B. S. DeWitt and R. Stora (eds.), Relativity, Groups, and Topology II, pp. 333-381 (Elsevier, 1984).
 
[52]  H. J. de Vega and N. Sánchez (eds.), Field Theory, Quantum Gravity, and Strings. Proceedings of a Seminar Se- ries Held at DAPHE , Observatoire de Meudon, and LPTHE, Université Pierre et Marie Curie, Paris, Between October 1984 and October 1985, pp. 1-46 (Springer, 1986).
 
[53]  J. J. Halliwell, J. Perez–Marcader, and W. H. Zurek (eds.), Physical Origins of Time Assymetry (Cambridge Uni- versity Press, 1992).
 
[54]  S. W. Hawking and W. Israel (eds.), Three hundred years of gravitation, pp. 631-652 (Cambridge University Press, 1987).
 
[55]  G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 107 (1977).
 
[56]  J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).
 
[57]  J. J. Halliwell and S. W. Hawking, Phys. Rev. D 31, 1777 (1985).
 
[58]  S. W. Hawking and D. Page, Nucl. Phys. B 298, 789 (1988).
 
[59]  S. W. Hawking, R. Laflamme, and G. W. Lyons, Phys. Rev. D 47, 5342 (1993).
 
[60]  R. Bousso and S. W. Hawking, SU-ITP-98-26 DAMTP-1998-87.
 
[61]  S. W. Hawking and T. Hertog, Phys. Rev. D 73, 123527 (2006).
 
[62]  J. B. Hartle, S. W. Hawking, and T. Hertog, Phys. Rev. Lett. 100, 201301 (2008).
 
[63]  Phys. Rev. D 77, 123537 (2008).
 
[64]  L. A. Glinka, Grav. Cosmol. 16 (1), pp. 7-15, (2010).
 
[65]  Concepts Phys. 6, pp. 19-41 (2009).
 
[66]  New Adv. Phys. 2, pp. 1-62 (2008).
 
[67]  L. A. Glinka, Grav. Cosmol. 15 (4), pp. 317-322 (2009).
 
[68]  AIP Conf. Proc. 1018, pp. 94-99 (2008).
 
[69]  in E. Ivanov and S. Fedoruk (eds.), Supersym- metries and Quantum Symmetries: Proc. of International Workshop, Dubna, Russia, July 30 - Aug. 4, 2007 (JINR Dubna, 2008), pp. 406-411.
 
[70]  SIGMA 3, pp. 087-100 (2007).
 
[71]  Ch. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (Freeman, 1973).
 
[72]  R. M. Wald, General Relativity (University of Chicago, 1984).
 
[73]  S. Carroll, Spacetime and Geometry. An Introduction to General Relativity (Addison-Weseley, 2004).
 
[74]  E. Poisson, A relativist's toolkit. The mathematics of black-hole mechan-ics (Cambridge University Press, 2004).
 
[75]  J. W. York, Phys. Rev. Lett. 28, 1082 (1972).
 
[76]  G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752 (1977).
 
[77]  R. Arnowitt, S. Deser and C. W. Misner, in L. Witten (ed.) Gravitation: An Introduction to Current Research, pp. 227–264 (John Wiley and Sons, 1962).
 
[78]  B. DeWitt, The Global Approach to Quantum F ield Theory (Clarendon Press, 2003).
 
[79]  A. Hanson, T. Regge, and C. Teitelboim, Constrained Hamiltonian Sys- tems (Accademia Nazionale dei Lincei, 1976).
 
[80]  B. S. DeWitt, Phys. Rev. 160, 1113 (1967).
 
[81]  P. A. M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, 1964).
 
[82]  Phys. Rev. 114, 924 (1959).
 
[83]  Proc. Roy. Soc. (London) A 246, 326 (1958).
 
[84]  Can. J. Math. 2, 129 (1950).
 
[85]  A. E. Fischer, in M. Carmeli, S.I. Fickler, and L. Witten (eds.) Rela- tivity. Proceedings of the Relativity Conference in the Midwest held at Cincinnati, Ohio, June 2-6, 1969, pp. 303–359 (Plenum Press, 1970).
 
[86]  Gen. Rel. Grav. 15, 1191 (1983).
 
[87]  J. Math. Phys. 27, 718 (1986).
 
[88]  B. S. DeWitt, in M. Carmeli, S.I. Fickler, and L. Witten (eds.) Rela- tivity. Proceedings of the Relativity Conference in the Midwest held at Cincinnati, Ohio, June 2-6, 1969, pp. 359-374 (Plenum Press, 1970).
 
[89]  J. A. Wheeler, Geometrodynamics (Academic Press, 1962). in C. DeWitt and B. DeWitt (eds.) Relativity, Groups, and Topology. Lectures Delivered at Les Houches During the 1963 Session of the Summer School of Theoretical Physics, pp. 317-501 (Gordon and Breach Science Publishers, 1964).
 
[90]  Einsteins Vision (Springer 1968). in C. M. DeWitt and J. A. Wheeler (eds.) Battelle Rencontres 1967 Lectures in Mathematics and Physics, pp. 242-308 (W. A. Benjamin, 1968).
 
[91]  V. V. Fernández, A. M. Moya, and W. A. Rodrigues Jr, Adv. Appl. Clifford Alg. 11, 1 (2001).
 
[92]  L.A. Glinka, AEthereal Multiverse: A New Unifying Theoretical Approach to Cosmology, Particle Physics, and Quantum Gravity (Cambridge International Science Publishing, 2012).