Applied Mathematics and Physics
ISSN (Print): 2333-4878 ISSN (Online): 2333-4886 Website: http://www.sciepub.com/journal/amp Editor-in-chief: Vishwa Nath Maurya
Open Access
Journal Browser
Go
Applied Mathematics and Physics. 2014, 2(3), 66-72
DOI: 10.12691/amp-2-3-2
Open AccessResearch Article

Thermodynamical Quantum Gravity

Lukasz Andrzej Glinka1,

1B.M. Birla Science Centre, Hyderabad, India

Pub. Date: June 09, 2014
(This article belongs to the Special Issue Towards New Cosmology from Quantum Gravity & Particle Physics)

Cite this paper:
Lukasz Andrzej Glinka. Thermodynamical Quantum Gravity. Applied Mathematics and Physics. 2014; 2(3):66-72. doi: 10.12691/amp-2-3-2

Abstract

The canonically quantized 3+1 General Relativity with the global one dimensionality conjecture defines the model, which dimensionally reduced and secondary quantized yields the one-dimensional quantum field theory wherein the generic one-point correlations create a boson mass responsible for quantum gravity. In this paper, this simple model is developed in a wider sense. We propose to consider the thermodynamics of space quanta, constructed ab initio from the entropic formalism, as the quantum gravity phenomenology.

Keywords:
quantum gravity phenomenology quantum geometrodynamics thermodynamics space quanta entropy of graviton

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Effective Action in Quantum Gravity, Institute of Physics Publishing (1992).
 
[2]  D. J. Gross, T. Piran, and S. Weinberg (eds.), Two Dimensional Quan- tum Gravity and Random Surfaces, World Scientific (1992).
 
[3]  G. W. Gibbons and S. W. Hawking (eds.), Euclidean Quantum Grav- ity, World Scientific (1993).
 
[4]  G. Esposito, Quantum Gravity, Quantum Cosmology and Lorentzian Geometries, Springer (1994).
 
[5]  J. Ehlers and H. Friedrich (eds.), Canonical Gravity: From Classical to Quantum, Springer (1994).
 
[6]  E. Prugoveˇcki, Principles of Quantum General Relativity, World Sci- entific (1995).
 
[7]  R. Gambini and J. Pullin, Loops, Knots, Gauge Theories and Quantum Gravity, Cambridge University Press (1996).
 
[8]  G. Esposito, A. Yu. Kamenshchik, and G. Pollifrone, Euclidean Quan- tum Gravity on Manifolds with Boundary, Springer (1997).
 
[9]  P. Fré, V. Gorini, G. Magli, and U. Moschella, Classical and Quantum Black Holes, Institute of Physics Publishing (1999).
 
[10]  I. G. Avramidi, Heat Kernel and Quantum Gravity, Springer (2000).
 
[11]  B. N. Kursunoglu, S. L. Mintz, and A. Perlmutter (eds.), Quantum Gravity, Generalized Theory of Gravitation and Superstring Theory- Based Unification, Kluwer (2002).
 
[12]  S. Carlip, Quantum Gravity in 2+1 Dimensions, Cambridge University Press (2003).
 
[13]  D. Giulini, C. Kiefer and C. L¨ammerzahl (eds.), Quantum Gravity. From Theory To Experimental Search, Springer (2003).
 
[14]  C. Rovelli, Quantum Gravity, Cambridge University Press (2004);
 
[15]  G. Amelino-Camelia and J. Kowalski-Glikman (eds.), Planck Scale Ef- fects in Astrophysics and Cosmology, Springer (2005).
 
[16]  A. Gomberoff and D. Marolf (eds.), Lectures on Quantum Gravity, Springer (2005).
 
[17]  D. Gross, M. Henneaux, and A. Sevrin (eds.), The Quantum Structure of Space and Time, World Scientific (2007).
 
[18]  C. Kiefer, Quantum Gravity, 2nd ed., Oxford University Press (2007).
 
[19]  T. Thiemann, Modern Canonical Quantum General Relativity, Cam- bridge University Press (2007).
 
[20]  D. Oriti, Approaches to Quantum Gravity. Toward a New Understand- ing of Space, Time, and Matter, Cambridge University Press (2009).
 
[21]  L. A. Glinka, Gravitation and Cosmology 16(1), pp. 7-15 (2010).
 
[22]  L. A. Glinka, Gravitation and Cosmology 15(4), pp. 317-322 (2009).
 
[23]  AIP Conf. Proc. 1018, 94 (2008); SIGMA 3, 087 (2007).
 
[24]  Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman (1973).
 
[25]  R. M. Wald, General Relativity, University of Chicago (1984).
 
[26]  L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Vol. 2. The Classical Theory of Fields, 4th ed., Butterworth (2000).
 
[27]  S. Carroll, Spacetime and Geometry. An introduction to General Rela- tivity, Addison-Wesley (2004).
 
[28]  J. W. York, Phys. Rev. Lett. 28, 1082 (1972).
 
[29]  G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752 (1977).
 
[30]  J. F. Nash, Ann. Math. 56, 405 (1952); ibid. 63, 20 (1956).
 
[31]  S. Masahiro, Nash Manifolds. Lect. Notes Math. 1269, Springer (1987).
 
[32]  M. Gu¨nther, Ann. Global Anal. Geom. 7, 69 (1989); Math. Nachr. 144, 16 5 (1989).
 
[33]  R. Arnowitt, S. Deser and Ch.W. Misner, in Gravitation: An Intro- duction to Current Research, ed. by L. Witten, p. 227, Wiley (1962). arXiv:gr-qc/0405109 and all references of the authors’ papers therein.
 
[34]  B. DeWitt, The Global Approach to Quantum Field Theory, Vol. 1, 2. Int. Ser. Monogr. Phys. 114, Clarendon Press (2003).
 
[35]  P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University (1964).
 
[36]  B. S. DeWitt, Phys. Rev. 160, 1113 (1967).
 
[37]  L. D. Faddeev, Usp. Fiz. Nauk 136, 435 (1982).
 
[38]  M. J. W. Hall, K. Kumar, and M. Reginatto, J. Phys. A: Math. Gen. 36, 9779 (2003).
 
[39]  N. Pinto-Neto, Found. Phys. 35, 577 (2005).
 
[40]  B. M. Barbashov, V. N. Pervushin, A. F. Zakharov, and V. A. Zinchuk, AIP Conf. Proc. 841, 362 (2006).
 
[41]  V. N. Pervushin and V. A. Zinchuk, Phys. Atom. Nucl. 70, 593 (2007).
 
[42]  R. Carroll, Theor. Math. Phys. 152, 904 (2007).
 
[43]  J. A. Wheeler, in Relativity, Groups, and Topology. ed. by C. DeWitt and B. S. DeWitt, Gordon and Breach (1964).
 
[44]  In Analytic Methods in Mathematical Physics. ed. by R. P. Gilbert and R. Newton, Gordon and Breach (1970).
 
[45]  A. E. Fischer, in Relativity. ed. by M. Carmeli, S.I. Fickler, and L. Witten, Plenum (1970).
 
[46]  Gen. Rel. Grav. 15, 1191 (1983).
 
[47]  J. Math. Phys. 27, 718 (1986).
 
[48]  J. A. Wheeler, Geometrodynamics, Academic Press (1962).
 
[49]  Einsteins Vision, Springer (1968).
 
[50]  B. S. DeWitt and G. Esposito, Int. J. Geom. Meth. Mod. Phys. 5, 101 (2008).
 
[51]  P. Gusin, Phys. Rev. D 77, 066017 (2008).
 
[52]  I. Ya. Aref’eva and I. Volovich Int. J. Geom. Meth. Mod. Phys. 05, 641 (2008).
 
[53]  Ch. Soo, Class. Quantum Grav. 24, 1547 (2007).
 
[54]  A. B. Henriques, Gen. Rel. Grav. 38, 1645 (2006).
 
[55]  M. P. Dabrowski, C. Kiefer, and B. Sandh¨ofer, Phys. Rev. D 74, 044022 (2006).
 
[56]  C. Kiefer, T. Lück, and P. Moniz, Phys. Rev. D 72, 045006 (2005).
 
[57]  T. Kubota, T. Ueno, and N. Yokoi, Phys. Lett. B 579, 200 (2004).
 
[58]  K. Meissner, Class. Quantum Grav. 21, 5245 (2004).
 
[59]  A. Ashtekar, M. Bojowald, and J. Lewandowski, Adv. Theor. Math. Phys. 7, 233 (2003).
 
[60]  A. O. Barvinsky and D. V. Nesterov, Nucl. Phys. B 608, 333 (2001).
 
[61]  V. V. Fernández, A. M. Moya, and W. A. Rodrigues Jr, Adv. Appl. Clifford Alg. 11, 1 (2001).
 
[62]  K. Huang, Statistical Mechanics. 2nd ed., Wiley, New York (1987).
 
[63]  R. Hagedorn, Suppl. Nuovo Cim. 3, 147 (1965); ibid. 6, 169 (1968).
 
[64]  J. Ambjørn, J. Jurkiewicz, and R. Loll, Phys. Rev. Lett. 93, 131 (2004).
 
[65]  F. Markopoulou and L. Smolin, Class. Quantum Grav. 24, 3813 (2007).
 
[66]  B. F. L. Ward, Int. J. Mod. Phys. D 17, 627 (2008).
 
[67]  M. Bojowald, Class. Quantum Grav. 26, 075020 (2009).
 
[68]  A. Ashtekar, W. Kaminski, and J. Lewandowski. Phys. Rev. D 79, 064030 (2009).
 
[69]  L.A. Glinka, Æthereal Multiverse: A New Unifying Theoretical Ap- proach to Cosmology, Particle Physics, and Quantum Gravity, Cam- bridge International Science Publishing, Great Abington, UK (2012).