Applied Mathematics and Physics
ISSN (Print): 2333-4878 ISSN (Online): 2333-4886 Website: http://www.sciepub.com/journal/amp Editor-in-chief: Vishwa Nath Maurya
Open Access
Journal Browser
Go
Applied Mathematics and Physics. 2014, 2(3), 59-65
DOI: 10.12691/amp-2-3-1
Open AccessResearch Article

Bosonic Quantum Gravity According to the Global One-Dimensionality Conjecture

Lukasz Andrzej Glinka1,

1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research in Dubna, Russia

Pub. Date: June 09, 2014
(This article belongs to the Special Issue Towards New Cosmology from Quantum Gravity & Particle Physics)

Cite this paper:
Lukasz Andrzej Glinka. Bosonic Quantum Gravity According to the Global One-Dimensionality Conjecture. Applied Mathematics and Physics. 2014; 2(3):59-65. doi: 10.12691/amp-2-3-1

Abstract

In this paper, making use of the global one-dimensionality conjecture, we discuss the reduction of the Wheeler–DeWitt quantum geometrodynamics to the Klein–Gordon equation describing the scalar bosonic particle. The method of second quantization in the appropriate Fock space is applied, and, employing both the Bogoliubov transformation as well as Heisenberg equations of motion, the quantum gravity is expressed as evolution of the creators and annihilators related to the initial data. It is shown that this procedure leads to the understanding of the boson mass, through the one-point two-boson quantum correlations, as a scaled initial data mass.

Keywords:
quantum gravity quantum geometrodynamics quantum field theory Wheeler-DeWitt equation bosonization

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin 44, N2, 778, (1915); ibid. 46, N2, 799, (1915); ibid. 48, N2, 844 (1915).
 
[2]  D. Hilbert, Konigl. Gesell. d. Wiss. Göttinger, Nachr., Math.-Phys. Kl. 27, 395 (1915).
 
[3]  B. Riemann, Nachr. Ges. Wiss. Göttingen 13, 133 (1920).
 
[4]  M. Kriele, Spacetime. Foundations of General Relativity and Differential Geometry, Lect. Notes Phys. Monogr. 59, Springer-Verlag, Berlin Heidelberg New York, (1999).
 
[5]  A. Palatini, Rend. Pal. 43, 203 (1919).
 
[6]  B. DeWitt, The Global Approach to Quantum Field Theory, Vol. 1,2, Int. Ser. Monogr. Phys. 114, Clarendon Press, Oxford (2003).
 
[7]  A. Hanson, T. Regge, and C. Teitelboim, Constrained Hamiltonian Sys- tems, Contributi del Centro Linceo Interdisciplinare di Scienze Matem- atiche e loro Applicazioni, n. 22, Accademia Nazionale dei Lincei, Roma (1976).
 
[8]  P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University, New York (1964).
 
[9]  B.S. DeWitt, Phys. Rev. 160, 1113 (1967).
 
[10]  F.A.E. Pirani and A. Schild, Phys. Rev. 79, 986 (1950).
 
[11]  P.G. Bergmann, Helv. Phys. Acta. Suppl. 4, 79 (1956); Nuovo Cim. 3, 1177 (1956).
 
[12]  J.A. Wheeler, Rev. Mod. Phys. 29, 463 (1957); Ann. Phys. NY 2, 604 (1957); in Relativity, Groups and Topology, ed. C. DeWitt and B. De- Witt, Gordon and Breach (1964), p.317; Einsteins Vision. Wie steht es beute mit Einsteins Vision, alles als Geometrie aufzufassen?, Springer- Verlag Berlin Heidelberg New York, New York (1968); Geometrodynam- ics, Academic Press, New York (1962).
 
[13]  P.A.M. Dirac, Proc. Roy. Soc. Lond. A 246, 326 (1958); ibid. 246, 333 (1958); Phys. Rev 114, 924 (1959).
 
[14]  P.W. Higgs, Phys. Rev. Lett 1, 373 (1958); ibid. 3, 66 (1959).
 
[15]  R. Arnowitt, S. Deser, and Ch.W. Misner, in Gravitation: an introduc- tion to current research, ed. L. Witten, John Wiley and Sons (1962), p.227, arXiv:gr-qc/0405109; Phys. Rev. 116, 1322 (1959); Phys. Rev 117, 1595 (1960); J. Math. Phys 1, 434 (1960).
 
[16]  A. Peres, Nuovo Cim. 26, 53 (1962).
 
[17]  R.F. Beierlein, D.H. Sharp, and J.A. Wheeler, Phys. Rev. 126, 1864 (1962).
 
[18]  A.B. Komar, Phys. Rev. 153, 1385 (1967); ibid. 164, 1595 (1967).
 
[19]  B.S. DeWitt, Gen. Rel. Grav. 1, 181 (1970).
 
[20]  V. Moncrief and C. Teitelboim, Phys. Rev D 6, 966 (1972).
 
[21]  A.E. Fischer and J.E. Marsden, J. Math. Phys. 13, 546 (1972).
 
[22]  C. Teitelboim, Ann. Phys. NY 80, 542 (1973).
 
[23]  A. Ashtekar and R. Geroch, Rep. Progr. Phys. 37, 1211 (1974).
 
[24]  T. Regge and C. Teitelboim, Phys. Lett B 53, 101 (1974); Ann. Phys. NY 88, 286, (1974).
 
[25]  K. Kuchaˇr, J. Math. Phys. 13, 768 (1972); ibid. 15, No.6, 708 (1974).
 
[26]  C.J. Isham, in Quantum Gravity, Oxford Symposium, eds. C.J. Isham, R. Penrose, and D.W. Sciama, Clarendon Press, Oxford (1975).
 
[27]  S.A. Hojman, K. Kuchaˇr, and C. Teitelboim, Ann. Phys. NY 96, 88 (1976).
 
[28]  G.W. Gibbons and S.W. Hawking, Phys. Rev. D 15, 2752, (1977).
 
[29]  D. Christodoulou, M. Francaviglia, and W.M. Tulczyjew, Gen. Rel. Grav. 10, 567 (1979).
 
[30]  M. Francaviglia, Riv. Nuovo Cim. 1, 1 (1979).
 
[31]  J.A. Isenberg, in Geometrical and topological methods in gauge theo- ries, Lect. Notes Phys. 129, eds. J.P. Harnad and S. Shnider, Springer– Verlag, New York (1980).
 
[32]  J.A. Isenberg and J.M. Nester, in General Relativity and Gravitation. One Hundred Years After the Birth of Albert Einstein., ed. A. Held, Plenum Press, NewYork and London (1980), p.23.
 
[33]  K. Kuchaˇr, Phys. Rev. D 39, 2263 (1989).
 
[34]  Z. Bern, S.K. Blau, and E. Mottola, Phys. Rev. D 33, 1212 (1991).
 
[35]  P.O. Mazur, Phys. Lett B 262, 405 (1991).
 
[36]  C. Kiefer and T.P. Singh, Phys. Rev. D 44, 1067 (1991).
 
[37]  C. Kiefer, in Canonical Gravity: From Classical to Quantum, ed. J. Ehlers and H. Friedrich, Springer, Berlin (1994), arXiv:gr-qc/9312015.
 
[38]  D. Giulini and C. Kiefer, Class. Quantum Grav. 12, 403 (1995).
 
[39]  N. Pinto-Neto and E.S. Santini, Phys. Rev. D 59, 123517 (1999).
 
[40]  N. Pinto-Neto and E.S. Santini, Gen. Rel. Grav. 34, 505 (2002).
 
[41]  M.J.W. Hall, K. Kumar, and M. Reginatto, J. Phys A: Math. Gen. 36, 9779 (2003).
 
[42]  N. Pinto-Neto, Found. Phys. 35, 577 (2005).
 
[43]  M.J.W. Hall, Gen. Rel. Grav. 37, 1505 (2005).
 
[44]  R. Carroll, Theor. Math. Phys. 152, 904 (2007).
 
[45]  P.A.M. Dirac, Can. J. Math. 2, 129 (1950); Phys. Rev. 114, 924 (1959).
 
[46]  L.D. Faddeev, Sov. Phys. Usp. 25, 132 (1982); Usp. Fiz. Nauk 136, 435 (1982).
 
[47]  J.A. Wheeler, in Battelle Rencontres: 1967 Lectures in Mathematics and Physics, eds. C.M. DeWitt and J.A. Wheeler (1968), p. 242
 
[48]  P. Gusin, Phys. Rev. D 77, 066017 (2008).
 
[49]  T.P. Shestakova, in Proceedings of Russian summer school-seminar on Gravitation and Cosmology "GRACOS-2007", Kazan (2007), p.179, arXiv:0801.4854v1 [gr-qc].
 
[50]  I.Ya. Aref’eva and I. Volovich, arXiv:0710.2696 [hep-ph].
 
[51]  Ch. Soo, Class. Quantum Grav. 24, 1547 (2007), arXiv:gr-qc/0703074.
 
[52]  D. Rickles, in The structural foundations of quantum gravity, ed. D. Rickles, S. French, and J. Saatsi, Clarendon Press (2006), p.152.
 
[53]  A.B. Henriques, Gen. Rel. Grav. 38, 1645 (2006), arXiv:gr-qc/0601134.
 
[54]  T. Kubota, T. Ueno, and N. Yokoi, Phys. Lett. B 579, 200 (2004), arXiv:hep-th/0310109.
 
[55]  K. Meissner, Class. Quantum Grav. 21, 5245 (2004), arXiv:gr- qc/0407052.
 
[56]  A. Ashtekar, M. Bojowald, and J. Lewandowski, Adv. Theor. Math. Phys. 7, 233 (2003), arXiv:gr-qc/0304074.
 
[57]  E. Anderson, J. Barbour, B. Foster, and N. ’O Murchadha, Class. Quan- tum Grav. 20, 1571 (2003), arXiv:gr-qc/0211022.
 
[58]  G.F.R. Ellis, in Modern Cosmology, ed. S. Bonometto, V. Gorini, U. Moschella (2002), ch.3.
 
[59]  C. Kiefer, in Towards Quantum Gravity: Proceedings of the XXXV In- ternational Winter School on Theoretical Physics, Held in Polanica, Poland, 2-11 February 1999, Lect. Notes Phys. 541, ed. J. Kowalski-Glikman, Springer (2000), p.158.
 
[60]  J.W. Norbury, Eur. J. Phys. 19, 143 (1998), arXiv:physics/9806004.
 
[61]  A.O. Barvinsky and C. Kiefer, Nucl. Phys. B 526, 509 (1998), arXiv:gr- qc/9711037.
 
[62]  T. Horiguchi, Nuovo Cim. B 112, 1107 (1997); ibid. 112, 1227 (1997).
 
[63]  N.P. Landsman, Class. Quantum Grav. 12, L119 (1995), arXiv:gr- qc/9510033.
 
[64]  S. Carlip, Class. Quantum Grav. 11, 31 (1994), arXiv:gr-qc/9309002.
 
[65]  D. Giulini, C. Kiefer, Phys. Lett. A 193, 21 (1994).
 
[66]  P. Mansfield, Nucl. Phys. B 418, 113 (1994).
 
[67]  M.D. Pollock, Int. J. Mod. Phys. A 7, 4149 (1992).
 
[68]  G. Hayward and K. Wong, Phys. Rev. D 46, 620 (1992).
 
[69]  A. Vilenkin, Phys. Rev. D 39, 1116 (1989).
 
[70]  S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
 
[71]  M. McGuigan, Phys. Rev. D 38, 3031 (1988).
 
[72]  S.W. Hawking, Nucl. Phys. B 239, 257 (1984).
 
[73]  J.B. Hartle and S.W. Hawking, Phys. Rev. D 28, 2960 (1983).
 
[74]  B.S. DeWitt, Phys. Rep. 19, 295 (1975).
 
[75]  P.G. Gilkey, J. Diff. Geom. 10, 601 (1975); Proc. Symp. Pure. Math. 27, 265 (1975).
 
[76]  H.P. McKean and I.M. Singer, J. Diff. Geom. 5, 233 (1971).
 
[77]  B.S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach (1965).
 
[78]  A.E. Fischer, in Relativity, eds. M. Carmeli, S.I. Fickler, and L. Witten, Plenum Press, New York (1970), p. 303; Gen. Rel. Grav 15, 1191 (1983); J. Math. Phys 27, 718 (1986).
 
[79]  S.W. Hawking, in Pontificiae Academiae Scientiarum Scripta Varia 48, 563 (1982). in Relativity, Groups and Topology II, Les Houches 1983, Session XL, eds. B.S. DeWitt and R. Stora, North Holland, Amsterdam (1984), p. 333; in 300 Years of Gravitation, eds. S.W. Hawking and W. Israel, Cambridge University Press, Cambridge (1987), p. 631; Phys. Rev. D 32, 2489 (1985).
 
[80]  A. Linde, Rep. Prog. Phys. 47, 925 (1984).
 
[81]  R. Brandenburger, Rev. Mod. Phys. 57, 1 (1985).
 
[82]  J.J. Halliwell and S.W. Hawking, Phys. Rev. D 31, 1777 (1985).
 
[83]  S.W. Hawking and J.C. Luttrell, Phys. Lett. B 143, 83 (1984); Nucl. Phys. B 247, 250 (1984).
 
[84]  D. Page, Phys. Rev. D 32, 2496 (1985).
 
[85]  P. Amsterdamski, Phys. Rev. D 31, 3073 (1985).
 
[86]  C.J. Isham, in Quantum Theory of Gravity. Essays in honor of the 60th birthday of Bryce S. De Witt, eds. S.M. Christensen and Adam Hilger, Bristol (1984), p. 299
 
[87]  C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation, W.H. Free- man and Company, San Francisco (1973).
 
[88]  J. von Neumann, Math. Ann. 104, 570 (1931).
 
[89]  H. Araki and E.J. Woods, J. Math. Phys. 4, 637 (1963).
 
[90]  J.-P. Blaizot and G. Ripka, Quantum theory of f inite systems, Mas- sachusetts Institute of Technology Press, Cambridge (1986).
 
[91]  F.A. Berezin, The Method of Second Quantization, 2nd ed., Nauka, Moscow (1987).
 
[92]  N.N. Bogoliubov and D.V. Shirkov, Introduction to the theory of quan- tized fields, 3rd ed., John Wiley and Sons, (1980)
 
[93]  N.N. Bogoliubov, A.A. Logunov, A.I. Oksak, and I.T. Todorov, General Principles of Quantum Field Theory, Nauka, Moscow (1991).
 
[94]  M.J.G. Veltman, in Methods in Field Theory. Proc. Les Houches, Ses- sion XXVIII, eds. R. Balian and J. Zinn-Justin, North Holland (1976), p. 265.
 
[95]  T. Horiguchi, Mod. Phys. Lett. A 8, 777 (1993); Phys. Rev. D 48, 5764 (1993).
 
[96]  M.J. Duncan, Nucl. Phys. B 361, 695 (1991).
 
[97]  W. Fishler, I. Klebanov, J. Polchinski, and L. Susskind, Nucl. Phys. B 327, 157 (1989).
 
[98]  S.B. Giddingsa and A. Strominger, Nucl. Phys. B 321, 481 (1989).
 
[99]  A. Hosoya and M. Morikawa, Phys. Rev. D 39, 1123 (1989).
 
[100]  M. McGuigan, Phys. Rev. D 38, 3031 (1988); ibid. 39, 2229 (1989).
 
[101]  V.A. Rubakov, Phys. Lett. B 214, 503 (1988).
 
[102]  L.A. Glinka, Æthereal Multiverse: A New Unifying Theoretical Ap- proach to Cosmology, Particle Physics, and Quantum Gravity, Cam- bridge International Science Publishing, Great Abington, UK (2012).