[1] | C.T.H. Baker, A perspective on the numerical treatment of Volterra equations, J. Comput. Appl. Math. 125, 217-249, 2000. |
|
[2] | P. Linz, Analytical and numerical methods for Volterra equations, SIAM, Philadelphia, PA, 1985. |
|
[3] | L.M. Delves, J.L. Mohamed, Computational methods for integral equations, Cambridge University Press, Cambridge, 1985. |
|
[4] | F. Bloom, Asymptotic bounds for solutions to a system of damped integrodifferential equations of electromagnetic theory, J. Math. Anal. Appl. 73, 524-542, 1980. |
|
[5] | K. Holmaker, Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones, SIAM J. Math. Anal. 24, (1) 116-128, 1993. |
|
[6] | M.A. Abdou, Fredholm–Volterra integral equation of the first kind and contact problem, Appl. Math. Comput. 125, 177-193, 2002. |
|
[7] | L.K. Forbes, S. Crozier and D.M. Doddrell, Calculating current densities and fields produced by shielded magnetic resonance imaging probes, SIAM J. Appl. Math. 57, 2, 401-425, 1997. |
|
[8] | P.J. Houwen, B.P.Sommeijer, Euler–Chebyshev methods for integro-differential equations, Appl. Numer. Math. 24, 203-218, 1997. |
|
[9] | W.H. Enright and M. Hu, Continuous Runge-Kutta methods for neutral Volterra integro-differential equations with delay, Appl. Numer. Math. 24, 175-190, 1997. |
|
[10] | K. Maleknejad, F. Mirzae and S. Abbasbandy, Solving linear integro-differential equations system by using rationalized Haar functions method, Appl. Math. Comput. 155, 317-328, 2004. |
|
[11] | K. Maleknejad and K. M. Tavassoli, Solving linear integro-differential equation system by Galerkin methods with hybrid functions, Appl. Math. Comput. 159, 603-612, 2004. |
|
[12] | R. P. Kanwall and K. C. Liu, A Taylor expansion approach for solving integral equations, Int. J. Math. Educ. Sci. Technol., 20, 3, 411-414, 1989. |
|
[13] | M. Sezer, Taylor polynomial solutions of volterra integral equations, Int. J. Math. Educ. Sci. Technol., 25, 5, 625-633, 1994. |
|
[14] | M. Sezer, A method for the approximate solution of the second-order linear differential equations in terms of Taylor polynomials, Int. J. Math. Educ. Sci. Technol., 27, 6, 821- 834, 1996. |
|
[15] | S. Yalçınbaş and M. Sezer, The approximate solution of high-order linear Volterra Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput., 112, 291-308, 2000. |
|
[16] | S. Yalçınbaş, Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations, Appl. Math. Comput., 127, 195-206, 2002. |
|
[17] | S. Yalçınbaş, A. Şahiner, M. Demirbaş, B. Altınay and S. Kocakuş, The approximate solution of high-order linear differential equation systems with variable coefficients in terms of Taylor polynomials, The third international conference ‘‘Tools for mathematical modelling’’, Saint Petersburg, 18-23 June 2001, 8, 175-188, 2001. |
|
[18] | Yalçınbaş and F. Yeniçerioğlu, The approximate solutions of high-order linear differential equation systems with variable coefficients, Far East Journal of Dynamical Systems, 6, 2, 139-157, 2004. |
|
[19] | A. Akyüz-Daşçıoğlu and M. Sezer, Chebyshev polynomial solutions of systems of higher-order linear Fredholh-Volterra integro-differential equations, J. Franklin Institute 342, 688-701, 2005. |
|
[20] | E. Yusufoğlu (Agadjavov), A homotopy perturbation algorithm to solve a system of Fredholm–Volterra type integral equations, Mathematical and Computer Modelling 47, 1099-1107, 2008. |
|
[21] | S. Yalçınbaş and K. Erdem, Approximate solutions of nonlinear Volterra integral equation systems, International Journal of Modern Physics B, 24, 32, 6235-6258, 2010. |
|