Applied Mathematics and Physics
ISSN (Print): 2333-4878 ISSN (Online): 2333-4886 Website: http://www.sciepub.com/journal/amp Editor-in-chief: Vishwa Nath Maurya
Open Access
Journal Browser
Go
Applied Mathematics and Physics. 2014, 2(1), 15-18
DOI: 10.12691/amp-2-1-5
Open AccessArticle

A New Collocation Method for Systems of Nonlinear Fredholm Integral Equations

S.A. Edalatpanah1, and E. Abdolmaleki1

1Department of Mathematics, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran

Pub. Date: January 20, 2014

Cite this paper:
S.A. Edalatpanah and E. Abdolmaleki. A New Collocation Method for Systems of Nonlinear Fredholm Integral Equations. Applied Mathematics and Physics. 2014; 2(1):15-18. doi: 10.12691/amp-2-1-5

Abstract

In this paper we present a new method for solving nonlinear Fredholm integral equations system in terms of continuous Legendre multi-wavelets on the interval [0, 1). To begin with we describe the characteristic of Legendre multi-wavelets and will go on to indicate that through this method a system of Fredholm integral equations can be reduced to an algebraic equation. Convergence analysis of this method is also presented. Finally, numerical results are given which support the theoretical results.

Keywords:
nonlinear Fredholm integral equation system of integral equations Legendre multi-wavelets collocation method Multiresolution of analysis (MRA) algebraic equations

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  K.E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge University Press, Cambridge, 1997.
 
[2]  R. Kress, Linear integral equations, Springer-Verlag, NewYork, 1999.
 
[3]  P.K. Kythe, P. Puri, Computational methods for linear integral equations, BirkhauserVerlag, Springer, Boston, 2002.
 
[4]  L.M. Delves, J.L. Mohamed, Computational methods for integral equations, Cambridge University Press, London, 1985.
 
[5]  K. Maleknejad, F. Mirzaee, Numerical solution of linear Fredholm integral equations system by rationalized Haar functions method. Int J Comput Math 80 (2003) 1397-405.
 
[6]  E. Babolian, J. Biazar, and A.R. Vahidi, The decomposition method applied to system of Fredholm integral equations of the second kind, Appl. Math. Comput. 148 (2004) 443-452.
 
[7]  K. Maleknejad, M. Sharezaee, and H. Khatami, Numerical solution of integral equations system of the second kind by Block-Pulse functions, Appl. Math. Comput. 166 (2005) 15-24.
 
[8]  K. Maleknejad, M. Shahrezaee, Rung-Kutta method for numerical solution of the system of Volterra integral equation, Appl. Math. Comput., 149 (2004) 399-410.
 
[9]  J. Pour-Mahamoud, M.Y. Rahimi-Ardabili, and S. Shahmorad, Numerical solution of system of Fredholm integro-differential equations by the Tau method, Appl. Math. Comput. 168 (2005) 465-478.
 
[10]  K. Ivaz, B.S.Mostahkam, Newton-Tau numerical solution of a system of nonlinear Fredholm integral equations of second kind. Appl. Comput. Math., 5 (2006) 201-208.
 
[11]  M. Gulsu and M. Sezer, Taylor collocation method for solution of systems of high-order linear Fredholm–Volterra integro-differential equations, Int. J. Comput. Math. 83 (2006) 429-448.
 
[12]  J. Rashidinia, M. Zarebnia, Convergence of approximate solution of system of Fredholm integral equations. J Math Anal Appl, 333 (2007) 1216-27.
 
[13]  R.K. Saeed, Homotopy perturbation method for solving system of nonlinear Fredholm integral equations of the second kind. Journal of Applied sciences Research, 10 (2008) 1166-1173.
 
[14]  M.I.Berenguer, G. Gamez, A.I. Garralda-Guillem, M.Ruiz Galan, M.C. Serrano Perez, Biorthogonal systems for solving Volterra integral equation systems of the second kind. J. Comput. Appl.Math. 235 (2011) 1873-1875.
 
[15]  H. Almasieh, M. Roodaki, Triangular functions method for the solution of Fredholm integral equations system, Ain Shams Engineering Journal., 3 (2012) 411-416.
 
[16]  S. Ding, H Yang, Fast multiscale Galerkin methods for solving ill-posed integral equations via a coupled system under general source conditions, J. Math. Anal. Appl. (2013).
 
[17]  W. Jiang, Z. Chen, Solving a system of linear Volterra integral equations using the new reproducing kernel method, Applied Mathematics and Computation. 219 (2013) 10225-10230.
 
[18]  A.P. Anioutine, A.G. Kyurkchan, Application of wavelets technique to the integral equations of the method of auxiliary currents,J. Quant. Spectrosc. Radiat. Transf. 79-80 (2003) 495-508.
 
[19]  B.A. Lewis, On the numerical solution of Fredholm integral equations of the first kind, J. Inst. Math. Appl. 16 (1973) 207-220.
 
[20]  C. Sanchez-Avila, Wavelet domain signal deconvolution with singularity-preserving regularization, Math. Comput. Simul. 61 (2003) 165-176.
 
[21]  A. Boggess, F. J. Narcowich, A First Course in Wavelets with Fourier Analysis, Prentice-Hall, 2001.
 
[22]  F. Khellat, S. A. Yousefi, The linear mother wavelets operational matrix of integration and its application, Journal of Franklin Institute, 343 (2006), 181-190.
 
[23]  H. Danfu, S. Xufeng, Numerical solution of Fredholm integral equations of the first kind by using linear Legendre multi-wavelets, Applied Mathematics and Computation., 191 (2007), 440-444.
 
[24]  Z. Abbasa, S. Vahdati, K. A. Atan , N. M. A. Nik Long, Legendre Multi-Wavelets Direct Method for Linear Integro-Differential Equations, Applied Mathematical Sciences, 14 (2009) 693-700.
 
[25]  F. Khellat, Optimal Control of Linear Time-Delayed Systems by Linear Legendre Multiwavelets, J Optim Theory Appl., 143 (2009) 107-121.
 
[26]  E.Abdolmaleki, S.A. Edalatpanah, A numerical method for solving systems of Fredholm integral equations by collocation linear Legendre multi-Wavelets, Information Sciences and Computing, (2013), Number 2, Article ID ISC010713, 10 pages.
 
[27]  C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer, New York, 1988.