Applied Mathematics and Physics
ISSN (Print): 2333-4878 ISSN (Online): 2333-4886 Website: Editor-in-chief: Vishwa Nath Maurya
Open Access
Journal Browser
Applied Mathematics and Physics. 2021, 9(1), 1-4
DOI: 10.12691/amp-9-1-1
Open AccessReview Article

Numerical Simulation of the Magnetic Susceptibility of a Spin 1 System Interacting with an Oscillating Magnetic Field

Chadia Qotni1, and Hicham Laribou2

1Departement des sciences, Ecole Normale Supérieure, University Moulay Ismail, Meknès, Morocco

2Laboratoire de Microstructure et de Mécanique des Matériaux Université de Lorraine Metz-France

Pub. Date: February 22, 2021

Cite this paper:
Chadia Qotni and Hicham Laribou. Numerical Simulation of the Magnetic Susceptibility of a Spin 1 System Interacting with an Oscillating Magnetic Field. Applied Mathematics and Physics. 2021; 9(1):1-4. doi: 10.12691/amp-9-1-1


We made the numerical simulation of the theoretical results obtained by the resonant means, method in combination with Floquet's theorem of a set of spin particles interacting with an oscillating field. The paces that we obtained by the numerical simulation using Mathematica software of the magnetic susceptibility function theoretically obtained as a function of temperature or as a function of frequency represent a good agreement with the curves of the work published using experimental results. Our objective was to obtain a quality agreement between the experiments and the theoretical model studied.

magnetic susceptibility the resonant means method floquet’s theorem

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  A.H. Zaki, M.A. Hafiez, W.M. El Rouby, S.I. El-Dek, A.A. Farghali, Novel magnetic standpoints in Na2Ti3O7 nanotubes, J. Magn. Magn Mater. 476 (2019) 207-212.
[2]  R.M. Francisco, J.P. Santos, Magnetic properties of the Ashkin-Teller model on a hexagonal nanotube, Phys. Lett. A 383 (11) (2019) 1092-1098.
[3]  Z. Zhang, Z. Li, J. Zhang, H. Bian, T. Wang, J. Gao, J. Li, Structural and magnetic properties of porous FexOy nanosheets and nanotubes fabricated by electrospinning, Ceram. Int. 45 (1) (2019) 457-461.
[4]  P. Robkhob, I.M. Tang, S. Thongmee, Magnetic properties of the dilute magnetic semiconductor Zn 1-x Co x O nanoparticles, J. Supercond. Nov. Magnetism (2019) 1-9.
[5]  A. Gorczyca-Goraj, T. Domanski, M.M. Maska, Topological superconductivity at finite temperatures in proximitized magnetic nanowires, Phys. Rev. B 99 (23) (2019) 235430.
[6]  Y. Wang, D. Hu, H. Jia, Q. Wang, Efficient enhancement of light trapping in the double-textured Al doped ZnO films with nanorod and crater structures, Phys. B Condens. Matter 565 (2019) 9-13.
[7]  N.Y. Schmidt, S. Laureti, F. Radu, H. Ryll, C. Luo, F. d’Acapito, M. Albrecht, Structural and magnetic properties of FePt-Tb alloy thin films, Phys. Rev. B 100 (6) (2019), 064428.
[8]  R. Das, J.A. Cardarelli, M.H. Phan, H. Srikanth, Magnetically tunable iron oxide nanotubes for multifunctional biomedical applications, J. Alloys Compd. 789 (2019) 323-329.
[9]  A.L. Elrefai, T. Yoshida, K. Enpuku, Magnetic parameters evaluation of magnetic nanoparticles for use in biomedical applications, J. Magn. Magn Mater. 474 (2019) 522-527.
[10]  N. Lowa, € J.M. Fabert, D. Gutkelch, H. Paysen, O. Kosch, F. Wiekhorst, 3D-printing of novel magnetic composites based on magnetic nanoparticles and photopolymers, J. Magn. Magn Mater. 469 (2019) 456-460.
[11]  C. Qotni, A. L. Marrakchi, S. Sayouri, Y. Achkar, Effets non linéaires dans l’interaction d’un ensemble de particules de spin 1 avec un champ oscillant dans l'expression de l'aimantation et de la susceptibilité magnétique, I.J.I.A.S. ISSN 2028-9324 vol.17 No. 3 Aug. 2016, pp.1050-1061.
[12]  G. Lochak. C.R.A.S. Série B, A/272. P.1281.1971.
[13]  A. Erbeia , Résoances magnétiques-Masson, Paris, 1969.
[14]  F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab, M. Behpour, Synthesis and characterization of CuWO 4 nanoparticle and CuWO 4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water, J. Mater. Sci. Mater. Electron. 29 (16) (2018) 13737-13745.
[15]  B.Z. Mi, C.J. Feng, J.G. Luo, D.Z. Hu, Magnetic compensation and critical properties of a mixed spin-(2, 3/2) Heisenberg single-walled nanotube superlattice, Superlattice. Microst. 113 (2018) 524-533.
[16]  M.D. Hossain, R.A. Mayanovic, R. Sakidja, M. Benamara, R. Wirth, Magnetic properties of core-shell nanoparticles possessing a novel Fe (II)-chromia phase: an experimental and theoretical approach, Nanoscale 10 (4) (2018) 2138-2147.
[17]  D. Lv, W. Jiang, Y. Ma, Z. Gao, F. Wang, Magnetic and thermodynamic properties of a cylindrical ferrimagnetic Ising nanowire with core/shell structure, Phys. E Low-dimens. Syst. Nanostruct. 106 (2019) 101-113.
[18]  E. Kantar, Ising-type single-segment ferromagnetic nanowire with core/shell: the dependences of the angle, temperature, and geometry, J. Supercond. Nov. Magnetism 31 (2) (2018) 341-346.
[19]  H. Magoussi, A. Zaim, M. Kerouad, Theoretical investigations of the phase diagrams and the magnetic properties of a random field spin-1 Ising nanotube with core/shell morphology, J. Magn. Magn Mater. 344 (2013) 109-115.
[20]  A.S. Tehrani, M.A. Kashi, A. Ramazani, A.H. Montazer, Axially adjustable magnetic properties in arrays of multilayered Ni/Cu nanowires with variable segment sizes, Superlattice. Microst. 95 (2016) 38-47.
[21]  B. Deviren, M. Keskin, Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach, Phys. Lett. A 376 (10-11) (2012) 1011-1019.
[22]  Z. Huang, Z. Chen, S. Li, Q. Feng, F. Zhang, Y. Du, Effects of size and surface anisotropy on thermal magnetization and hysteresis in the magnetic clusters, Eur. Phys. J. B-Condens. Matter Complex Syst. 51 (1) (2006) 65-73.
[23]  Ü. Akıncı, Crystal field dilution in S-1 Blume Capel model: hysteresis behaviors, Phys. Lett. A 380 (14-15) (2016) 1352-1357.
[24]  N. Si, J.M. Wang, A.B. Guo, F. Zhang, F.G. Zhang, W. Jiang, Study on magnetic and thermodynamic characteristics of core-shell graphene nanoribbon, Phys. E Lowdimens. Syst. Nanostruct. (2019) 113884.
[25]  X.W. Quan, N. Si, F. Zhang, J. Meng, H.L. Miao, Y.L. Zhang, W. Jiang, Phase diagrams of kekulene-like nanostructure, Phys. E Low-dimens. Syst. Nanostruct. 114 (2019) 113574.
[26]  T. Kaneyoshi, Effects of random fields in an antiferromagnetic Ising bilayer film, Phys. E Low-dimens. Syst. Nanostruct. 94 (2017) 184-189.
[27]  R. Honmura, T. Kaneyoshi, Contribution to the new type of effective-field theory of the Ising model, J. Phys. C Solid State Phys. 12 (19) (1979) 3979.
[28]  R. Honmura, T. Kaneyoshi, Contribution to the new type of effective-field theory of the Ising model, J. Phys. C Solid State Phys. 12 (19) (1979) 3979.
[29]  T. Kaneyoshi, J.W. Tucker, M. Jacur, Differential operator technique for higher spin problems, Phys. A Stat. Mech. Appl. 186 (3-4) (1992) 495-512.