Applied Mathematics and Physics
ISSN (Print): 2333-4878 ISSN (Online): 2333-4886 Website: http://www.sciepub.com/journal/amp Editor-in-chief: Vishwa Nath Maurya
Open Access
Journal Browser
Go
Applied Mathematics and Physics. 2019, 7(1), 8-13
DOI: 10.12691/amp-7-1-2
Open AccessArticle

Analytical Computation of the Caldirola-Kanai Oscillator Parameters by the Dynamic Invariant Method

C. Qotni1, A. L. Marrakchi1, S. Sayouri1, and Y. Achkar1

1Department of Physics LPTA, Faculty of Sciences - Dhar El Mahraz, Fes, Morocco

Pub. Date: October 17, 2019

Cite this paper:
C. Qotni, A. L. Marrakchi, S. Sayouri and Y. Achkar. Analytical Computation of the Caldirola-Kanai Oscillator Parameters by the Dynamic Invariant Method. Applied Mathematics and Physics. 2019; 7(1):8-13. doi: 10.12691/amp-7-1-2

Abstract

The method of the invariant dynamical linear operator is very simple and may be useful to solve the Schrödinger equation, in particular in the case of the problem of a harmonic oscillator with a time dependent mass and frequency. Indeed, we have successfully used this approach to the Caldirola-Kanai oscillator. In particular, we have obtained explicit expressions of the uncertainty product and the quantum correlation coefficient. The results obtained are in good agreement with those of the literature.

Keywords:
dynamical invariant method harmonic quantum oscillator quantum correlation coefficient Heisenberg product of uncertainty

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  D. Bohm. Prentice Hall Quantum theory, 1951 New York. ISBN : 0-486-65969-0.
 
[2]  E. Fradkin. Field Theories of condensed matter physics. Second edition 2013 ISBN 978-0-521-76444-5.
 
[3]  M. Suhail Zubairy. Marlan O Quantum Optics. Scully, American Journal of Physics 67, 648 New York 1997.
 
[4]  M. Gell-Mann and F. E. Low Quantum Electrodynamics at Small Distances. Phys. Rev. 95, 1300 – Published 1 September 1954.
 
[5]  R. Kosloff Time-Dependent Quantum-Mechanical Methods for Molecular Dynamics.J. Phys. Chem. 1988, 92, 2087-2100.
 
[6]  F. Cooper, S. Pi, and P. Stancioff. Quantum dynamics in a time-dependent variational approximation. Phys. Rev. D 34, 3831-Published 15 December 1986.
 
[7]  D Kosloff. A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics. Journal of Computational Physics. Volume 52, Issue 1, October 1983, Pages 35-53.
 
[8]  M. S. Abdalla Canonical treatment of harmonic oscillator with variable mass, , Phys. Rev. A 33, 2870 – Published 1 May 1986.
 
[9]  I. A. Pedrosa, and B. Baseia Phys. Harmonic oscillator with time-dependent mass and frequency and a perturbative potential. C. M. A. Dantas, Rev. A 45, 1320 – Published 1 February 1992.
 
[10]  C M Cheng and P C W Fung The evolution operator technique in solving the Schrodinger equation, and its application to disentangling exponential operators and solving the problem of a mass-varying harmonic oscillator. 1988 J. Phys. A: Math. Gen. 21, 4115.
 
[11]  H. R. Lewis, Jr. and W. B.Riesenfeld,An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field. J. Math. Phys. 10, 1458 (1969).
 
[12]  H. R. Lewis Jr. Class of Exact Invariants for Classical and Quantum Time-Dependent Harmonic Oscillators. Journal of Mathematical Physics 9, 1976 (1968).
 
[13]  Piero Caldirola. Forze non conservative nella meccanica quantistica. Il Nuovo Cimento, 18(9): 393-400, 1941.
 
[14]  E. Kanai. On the Quantization of the Dissipative Systems. Progress of Theoretical Physics, 3(4): 440-442, 1950.
 
[15]  I. A. Pedrosa Comment on “Coherent states for the time-dependent harmonic oscillator”., Phys. Rev. D 36, 1279-Published 15 August 1987..
 
[16]  Y. Achkar, S. Sayouri S., A.L. Marrakchi. A Simple Approach For The Problem Of The Harmonic Oscillator With Time Dependent Mass And Frequency.., Physical & Chemical News. ISSN 1114-3800. 2008, No. 39, pp. 19-24.
 
[17]  M. Cariglia, C. Duval, G. W. Gibbons, P. A. Horváthy Eisenhart lifts and symmetries of time-dependent systems Annals of Physics, Volume 373, October 2016, Pages 631-654
 
[18]  Chia-Chun Chou. Dissipative quantum trajectories in complex space: Dampedharmonic oscillator Annals of Physics, Volume 373, October 2016, Pages 325-345
 
[19]  Lin Zhang, Weiping Zhang. Lietransformation method on quantum state evolution of a general time dependent driven and damped parametric oscillator Annals of Physics, Volume 373, October 2016, Pages 424-45.
 
[20]  Roberto Garra, Giorgio S. Taverna, Delfim F. M. Torres. Fractional Herglotz variational principles with generalized Caputo derivatives Chaos, Solitons & Fractals, Volume 102, September 2017, Pages 94-98
 
[21]  Meng-Yun Lai, Xiao-Yin Pan, Yu-Qi Li. ]Wave function for dissipative harmonically confined electrons in a time dependent electric field Physica A: Statistical Mechanics and its Applications, Volume 453, 1 July 2016, Pages 305-315
 
[22]  C. Qotni, A. L. Marrakchi, S. Sayouri, Y. Achkar, Analytical study of the Forced Harmonic oscillator with time dependent parameters by Means of the Invariant dynamical linear operator, Internatinnal Review of Physics (I.RE.PHY.), vol.7, N.2 ISSN 1971-68X, April 20.
 
[23]  F. A. Brito, F. F. Santos, J. R. L. Santos, Harmonic oscillators from displacement operators and thermodynamics,Physica A: Statistical Mechanics and its Applications, Volume 516, 15 February 2019, Pages 78-89.
 
[24]  H. de la Cruz, J. C. Jimenez, R. J. Biscay,On the oscillatory behavior of coupled stochastic harmonic oscillators driven by random forcesStatistics & Probability Letters, Volume 146, March 2019, Pages 85-89.
 
[25]  T. Iwai and B. Zhilinskii, The 2D Kramers-Dirac oscillator Physics Letters A, In press, corrected proof, Available online, 1 February 2019.
 
[26]  Jaume Giné and Claudia Valls On the dynamics of the Rayleigh–Duffing oscillator Nonlinear Analysis: Real World Applications, Volume 45, February 2019, Pages 309-319.
 
[27]  Shinichi Deguchi, Yuki Fujiwara and Kunihiko Nakano, Two quantization approaches to the Bateman oscillator model, Annals of Physics, In press, accepted manuscript, Available online, 8 February 2019.
 
[28]  P. Facchi, S. Pascazio, F. V Pepe and K. Yuasa, ”Long-lived entanglement of two multilevel atoms in awaveguide,” J. Phys. Commun 8, 3 (2018)..
 
[29]  T. M. El-Shahat, M. Kh. Ismail, and A. F. Al Naim, ”Damping in the Interaction of a Field and Two Three-Level Atoms Through Quantized Caldirola–Kanai Hamiltonian,” J. Russ. Laser Res 39, 231(2018).
 
[30]  Fardin Kheirandish, Exact density matrix of an oscillator-bath system: Alternative derivation Physics Letters A, Volume 382, Issue 46, 23 November 2018, Pages 3339-3346.
 
[31]  M. Ghorbani, M. Javad Faghihi and H. Safari, ”Wigner function and entanglement dynamics of a twoatom two-mode nonlinear Jaynes–Cummings model,” J. Opt. Soc. Am. B 34, 1884 (2017)..
 
[32]  R. Daneshm and and M. K. Tavassoly, ”Description of Atom-Field Interaction via Quantized Caldirola-Kanai Hamiltonian,” Int. J. Theor. Phys 56, 10773 (2017)..
 
[33]  R. Daneshmand and M. K. Tavassoly, ”Damping effect in the interaction of a -type three-level atom with a single-mode field: Caldirola–Kanai approach,” Laser Phys 26, 065204 (2016).