American Journal of Water Resources
ISSN (Print): 2333-4797 ISSN (Online): 2333-4819 Website: http://www.sciepub.com/journal/ajwr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Water Resources. 2017, 5(2), 29-40
DOI: 10.12691/ajwr-5-2-2
Open AccessArticle

Hydrochemical Assessment of Spring Waters from the Iron Quadrangle Region, Minas Gerais, Brazil

Cláudia A. Ferreira1, , Helena E. L. Palmieri2, Maria Ângela de B. C. Menezes2 and Lúcia M. L. A. Auler2

1Pos Graduation in Science and Radiation Technology, Minerals and Materials, (CDTN/CNEN), Belo Horizonte, Minas Gerais, Brazil

2Nuclear Technology Development Centre/Brazilian Commission for Nuclear Energy (CDTN/CNEN), Belo Horizonte, Minas Gerais, Brazil

Pub. Date: March 08, 2017

Cite this paper:
Cláudia A. Ferreira, Helena E. L. Palmieri, Maria Ângela de B. C. Menezes and Lúcia M. L. A. Auler. Hydrochemical Assessment of Spring Waters from the Iron Quadrangle Region, Minas Gerais, Brazil. American Journal of Water Resources. 2017; 5(2):29-40. doi: 10.12691/ajwr-5-2-2

Abstract

This study deals with the hydrochemical characterization and water quality assessment of springs spread throughout the Iron Quadrangle (IQ) in the state of Minas Gerais, Brazil. In the past these spring waters played an essential and strategic role in supplying towns with potable water. Up to this day water is used by both the local population and tourists who thrust in its quality. A total of forty-four spring water and four artesian well water samples were collected at 26 points in different municipalities of the IQ in two different surveys, March and August 2015, wet and dry seasons, respectively. These water samples were studied for 38 physico-chemical parameters: turbidity (TB), electrical conductivity (EC), total dissolved solids (TDS), total hardness (TH), pH, Ca2+, Mg2+, Na+, K+, F-, Cl-, SO42-, HCO3-, NH4+, NO3-, NO2-, PO4-, SiO2, Fe, Li, V, Cr, Cr (VI), Co, Ni, Cu, As, Ba, Al, Mn, Zn, Sb, Cd, Mo, Se, Tl, Hg and U, as well as thermotolerant coliforms (TC). The pH value of groundwater in the study area ranges from 3.8 to 7.0, indicating the acid nature of most of the spring water samples. In these samples, Ca2+ and Na+ are the major cations and HCO3- and NO3- the dominant anions. As expected, the trace metals presented the following decreasing concentrations: Fe> Ba> Al> Mn> Zn> Ni, since the IQ region is abundant in iron, aluminum and manganese minerals. The chemical relationships in Piper diagram identified mixed-bicarbonate, magnesium-bicarbonate and sodium-bicarbonate as the most prevalent water types. The Gibbs plots of data from the study area indicated that the chemical composition of most spring water samples was controlled primarily by rainfall dominance. Except for some springs, groundwater in the study area are inappropriate for drinking and domestic purposes but good for animal consumption, irrigation and recreation.

Keywords:
spring waters Iron Quadrangle Minas Gerais-Brazil hydrochemical assessment trace elements

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Omar, Y.Y., Parker, A., Smith, J.A. and Pollard, S.J.T, “Risk management for drinking water safety in low and middle income countries - cultural influences on water safety plan (WSP) implementation in urban water utilities”, Science of the Total Environment, 576. 895-906. 2017.
 
[2]  Singh, V.B. and Tripathi, J.N, “Identification of Critical Water Quality Parameters Derived from Principal Component Analysis: Case Study from NOIDA Area in India”, American Journal of Water Resources, 4(6). 121-129. 2016.
 
[3]  Peh, Z., Šorša, A. and Halamić, J, “Composition and variation of major and trace elements in Croatian bottled waters”, Journal of Geochemical Exploration, 107. 227-237. 2010.
 
[4]  Nair, H.C., Padmalal, D. and Joseph, A, “Hydrochemical assessment of tropical springs - a case study from SW India”, Environ. Monit. Assess., 187(48). 1-24. 2015.
 
[5]  Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J.M. and Fernandez, L, “Temporal Evolution of Groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by Principal Component Analysis”, Water Research, 3(34). 807-816. 2000.
 
[6]  Kilchmann, S., Waber, H.N., Parriaux, A. and Bensimon, M, “Natural tracers in recent groundwaters from different Alpine aquifers”, Hydrogeology Journal, 12. 643-661. 2004.
 
[7]  De Carvalho, A.M., Duarte, M.C. and Ponezi, A.N, “Quality assessment of sulfurous thermal waters in the city of Poços de Caldas, Minas Gerais, Brazil”, Environmental Monitoring Assessment, 187(563). 1-11. 2015.
 
[8]  Hao, X., Wang, D., Wang, P., Wang, Y. and Zhou, D, “Evaluation of water quality in surface water and shallow groundwater: a case study of a rare earth mining area in southern Jiangxi Province, China”, Environmental Monitoring Assessment, 188. 1-24. 2016.
 
[9]  Jang, C.S., Chen, J.S., Lin, B.U. and Liu, W.C, “Characterizing hydrochemical properties of springs in Taiwan based on their geological origins”, Environmental Monitoring Assessment, 184. 63-75. 2012.
 
[10]  Borba, R.P., Figueiredo, B.R. and Matschullat, J, “Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil”, Environmental Geology, 44. 39-52. 2003.
 
[11]  Deschamps, E. and Matschullat, J, Arsênio antropogênico e natural: um estudo em regiões do Quadrilátero Ferrífero, Fundação Estadual do Meio Ambiente (FEAM), Belo Horizonte, 2007, 330pp.
 
[12]  Gonçalves, J.A.C., Lena, J.C., Paiva, J.F., Nalini, H.A.Jr., and Pereira, J.C, “Arsenic in the groundwater of Ouro Preto (Brazil): Its temporal behavior as influenced by hydric regime and hydrology”, Environmental Geology, 53. 785-794. 2007.
 
[13]  Matschullat, J., Borba, R.P., Deschamps, E., Figueiredo, B.R., Gabrio, T. and Schwenk, M, “Human and environmental contamination in the Iron Quadrangle, Brazil”. Applied Geochemistry, 15. 181-190. 2000.
 
[14]  Varejão, E.V.V., Bellato, C.R., Fontes, M.P.F. and Mello, J.W.V, “Arsenic and trace metals in river water and sediments from the southeast portion of the Iron Quadrangle, Brazil”, Environmental Monitoring Assessment, 172. 631-642. 2011.
 
[15]  Singh, A.K., Raj, B., Tiwari, A.K. and Mahato, M.K, “Evaluation of hydrogeochemical processes and groundwater quality in the Jhansi district of Bundelkhand region, India,” Environmental Earth Sciences, 70 (3). 1125-1247. 2013.
 
[16]  Song, S.R., Chen, Y.L., Liu, C.M., Ku, W.Y., Chen, H.F., Liu, Y.J., Kuo, L.W., Yang, T.F., Chen, C.H., Liu, T.K. and Lee, M, “Hydrochemical changes in spring waters in Taiwan: implications for evaluating sites for earthquake precursory monitoring,” TAO, 16(4). 745-762. 2005.
 
[17]  De Azevedo, U.R., Machado, M.M.M., Castro, P. de T.A., Renger, F.E., Trevisol, A. and Beato, D.A.C, Quadrilátero Ferrífero (MG). Geoparques do Brasil, Propostas, CPRM – Serviço Geológico do Brasil. Vol. I, Cap. 7, 2012, 748pp.
 
[18]  Silva, A.B., Sobreiro-Neto, A.F. and Bertachini, A.C, “Potencial das águas subterrâneas do Quadrilátero Ferrífero”, in VIII Congresso Brasileiro de Águas Subterrâneas, Recife. Associação Brasileira de Águas Subterrâneas-ABAS, 1994, 264-273.
 
[19]  Lobato, L.M., Baltazar, O.F., Reis, L.B., Achtschin, A.B., Baars, F.J., Timbó, M.A., Berni, G.V, Mendonça, B.R.V. de, Ferreira, D.V, Projeto Geologia do Quadrilátero Ferrífero - Integração e Correção Cartográfica em SIG com Nota Explicativa, Belo Horizonte: CODEMIG. CD-ROM. 2005.
 
[20]  Piper, A.M, “A graphic procedure in the geochemical interpretation of water analyses”, Trans. Am. Geophy. Union, 25. 914-928. 1944.
 
[21]  Gibbs, R.J. “Mechanisms controlling world water chemistry,” Science, 170. 1088-1090. 1970.
 
[22]  Rice, E.W., Bard, R.B., Eaton, A.D. and Clesceri, L.S, Standard methods for the examination of water and wastewater, 22 ed. Ed. American Public Health Association, 2012.
 
[23]  Palmieri, H.E.L., Knupp, E.A.N., Ferreira, C.A. and Windmoller, C.C, “Direct quantification of trace element concentrations in spring waters by ICP-MS.” Brazilian Journal of Analytical Chemistry - BrJAC (Print), 3. 451-459. 2013.
 
[24]  World Health Organization (WHO), Guidelines for Drinking Water Quality, Vol. 1: Recommendations (4rd ed.), Geneva: Switzerland, 2011, 541pp.
 
[25]  Conselho Nacional do Meio Ambiente (CONAMA), Resolução nº 369 de 3 de abril de 2008. Dispõe sobre a classificação e diretrizes ambientais para o enquadramento das águas subterrâneas e dá outras providências, Brasil, 2008, 13pp.
 
[26]  Pitt, R., Clark, S. and Field, R, “Groundwater contamination potential from storm water infiltration practices”, Urban Water, 1. 217-236. 1999.
 
[27]  Talabi, A.O. and Tijani, M.N, “Hidrochemical and stable isotopic characterization of shallow groundwater system in the crystalline basement terrain of Ekiti area, southwestern Nigeria”, Appl. Water Sci., 3.229-245. 2013.
 
[28]  Abd El-Salam, M.M. and Abu-Zuid. G.I, “Impact of landfill leachate on the groundwater quality: A case study in Egypt”, Journal of Advanced Research, 6.579-586.2015.
 
[29]  Nordstrom, D.K, “The effect of sulfate on aluminum concentrations in natural waters: Some stability relations in the system A12O3SO3H2O at 298 K”, Geochim. Cosmochim. Acta, 46.681-692.1982.
 
[30]  Ferreira, P.C., Piai, K.de.A., Takayanagui, A.M. and Segura-Muñoz, S.I, “Aluminum as a risk factor for Alzheimer's disease”, Rev. Latino-am Enfermagem, 16 (1). 151-157. 2008.
 
[31]  Mello, J.W.V.de., Roy, W.R., Talbott, J.L. and Stucki, J.W, “Mineralogy and arsenic mobility in arsenic-rich Brazilian soils and sediments,” Journal of Soils and Sediments, 6.9-19.2006.
 
[32]  Deschamps, E., Ciminelli, V.S.T., Lange, F.T., Matschullat, J., Raue, B. and Schmidt, H, “Soil and sediment geochemistry of the Iron Quadrangle, Brazil: The case of arsenic,” Journal of Soils and Sediments, 2 (4). 216-222. 2002.
 
[33]  Palmieri, H.E.L, Distribuição, Especiação e Transferência de Hg e As para a Biota em Áreas do Sudeste do Quadrilátero Ferrífero, MG, Ouro Preto, Tese (Doutorado) – Universidade Federal de Ouro Preto, 2006. 169pp.
 
[34]  Kamtchueng, B.T., Fantong, W.Y., Wirmvem, M.J., Tiodjio, R.E., Takounjou, A.F., Ndam Ngoupayou, J.R., Kusakabe, M., Zhang, J., Ohba, T., Tanyileke, G., Hell, J.V. and Ueda, A, “Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization,” Environ. Monit. Assess, 188 (9). 524. 2016.
 
[35]  Day, B.A., Nightingale, H.I, “Relationships between Ground-water Silica, Total Dissoved Solids, and Specific Electrical Conductivity,” Groundwater, 22 (1). 80-85. Jan-Feb.1984.
 
[36]  Martin, K.R, “The chemistry of silica and its potential health benefits,” J. Nutr. Health Aging., 11 (2). 94-98. 2007.
 
[37]  Feitosa, F.A.C., Filho, J.M., Feitosa, E.C. and Demetrio, J.G.A, Hidrogeologia: conceitos e aplicações, 3 ed., Rio de Janeiro, RJ: CPRM, 2008, 812pp.
 
[38]  Davis, S.N. and De Wiest, R.J.M, Hydrogeology. Vol. 463, New York: John Wiley & Sons, 1966.
 
[39]  Talabi, A.O, “Hydrogeochemistry and Stable Isotopes (δ18O and δ2 H) Assessment of Ikogosi Spring Waters”, American Journal of Water Resources, 1 (3). 25-33. 2013.
 
[40]  Jalali, M, “Geochemistry characterisation of ground-water in an agricultural area of Razan, Hamadan, Iran,” Environmental Geology, 56 (7). 1479-1488. 2009.
 
[41]  Carmo, F.F.do., Carmo, F.F.do., Campos, I.C. and Jacobi, C.M, “Cangas - Ilhas de ferro estratégicas para conservação”, Ciência Hoje, 295. August. 2012.