American Journal of Water Resources
ISSN (Print): 2333-4797 ISSN (Online): 2333-4819 Website: http://www.sciepub.com/journal/ajwr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Water Resources. 2013, 1(3), 20-24
DOI: 10.12691/ajwr-1-3-1
Open AccessArticle

Removal of Turbidity, Suspended Solids and Ions of Fe from Aqueous Solution using Okra Powder by Coagulation-Flocculation Process

Edilson de Jesus1, , Paulo Victor Cruz1, José Adair Pacífico1 and Antônio Santos Silva2

1Departament of Chemical Engineering, Federal of Sergipe University, São Cristóvão-SE, Brazil

2Departament of Mathmatics, Federal of Sergipe University, São Cristóvão-SE, Brazil

Pub. Date: June 27, 2013

Cite this paper:
Edilson de Jesus, Paulo Victor Cruz, José Adair Pacífico and Antônio Santos Silva. Removal of Turbidity, Suspended Solids and Ions of Fe from Aqueous Solution using Okra Powder by Coagulation-Flocculation Process. American Journal of Water Resources. 2013; 1(3):20-24. doi: 10.12691/ajwr-1-3-1

Abstract

This work evaluates the efficiency of okra powder in removing turbidity, suspended solids and ions of Fe from synthetic raw water through coagulation-flocculation process. The raw water samples with initial turbidity of 100 NTU were prepared using natural red clay (-32+100 mesh particle size). The jar tests were carried out by varying the pH and the dose of okra powder. The initial pH 8.0 of synthetic raw water and 30 mgL-1 okra powder caused 80.92% reduction of Fe ions and 99% turbidity removal after 10 minutes of sedimentation. The efficiency of Fe the removal was evaluated by characterization EDX sludge formed after sedimentation with and without okra powder and the jar tests were carried out using a solution of ferric sulfate as the coagulating agent.

Keywords:
coagulation-flocculation okra powder ions of Fe suspended solids turbidity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 4

References:

[1]  Libânio M. Fundamentos de qualidade e tratamento de água. Átomo, Campinas, 2005.
 
[2]  Akhtar M., Iqbal S., Bhanger M.I., Zia-Ul-Haq M., Moazzam M. “Sorption of organophosphorous pesticides onto chickpea husk from aqueous solutions”. Colloids Surf B Biointerfaces, 69:63–70, 2009.
 
[3]  Okuda T., Baes A.U., Nishijima W., Okada M. “Improvement of extraction method of coagulation active components from Moringa oleifera seed”. Water Res, 33(15): 3373-3378, 1999.
 
[4]  Ndabigengesere A., Narasiah K.S. “Quality of water treated by coagulation using Moringa oleifera seeds”. Water Res, 32:781-91, 1998.
 
[5]  Zeng D., Wu J.; Kennedy J.F. “Application of a chitosan flocculant to water treatment”. Carbohydr Polym, 71:135-9, 2008.
 
[6]  Santos Filho J.D., Santa Rita E.S. Gerenciamento do resíduo gerado na clarificação de água da RLAM [monograph on the internet]. Universidade Federal da Bahia (Escola Politécnica): Pós-Graduação em Gerenciamento e Tecnologia Ambientais na Indústria; 2008 [cited 2012 set 22]: Available from: http://www.teclim.ufba.br/site/material_online/monografias/mono_santosfilho_e_rita.pdf.
 
[7]  Gupta V.K., Ali I. “Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste”. J Colloid Interface Sci, 271(2):321-8, 2004.
 
[8]  Gupta V.K., Gupta M., Sharma S. “Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste”, Water Res, 35:1125-34, 2001.
 
[9]  Gupta V.K., Rastogi A. “Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass”. J Hazard Mater, 154: 347-54, 2008.
 
[10]  Gupta V.K., Rastogi A. “Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study”, Colloids Surf B Biointerfaces, 64:170-8, 2008.
 
[11]  Gupta V.K., Rastogi A. “Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase”, J. Hazard Mater, 153:759-66, 208.
 
[12]  Gupta V.K., Rastogi A. “Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies”, J Hazard Mater, 152:407-14, 2008.
 
[13]  Singh A.K., Gupta V.K., Gupta B. “Chromium (III) selective membrane sensors based on Schiff bases as chelating ionophores”. Anal Chim Acta, 585:171-8, 2007.
 
[14]  Pehlivan E., Kahraman H.T. Hexavalent chromium removal by Osage Orange, Food Chem, 133:1478-84, 2012.
 
[15]  Agarwal M., Srinivasan R., Mishira A. “Study on flocculation efficiency of okra gum in sewage waste water”, Macromol Mater and Eng, 286:560-3, 2001.
 
[16]  Calixto C.D. Óleo de quiabo como fonte alternativa para produção de biodiesel e avaliação de antioxidantes naturais em biodiesel etílico de soja [monograph on the internet]. Universidade Federal da Paraíba: Programa de Pós-Graduação em Química; 2011 [cited 2012 oct 22]: Available from: http://www.quimica.ufpb.br/posgrad/dissertacoes/Dissertacao_Clediana_Dantas_Calixto.pdf.
 
[17]  FILGUEIRA, F. A. R. Novo Manual de Olericultura: agrotecnologia moderna na produção e comercialização de hortaliças – Viçosa: UFV, cap.24, p.337-382, 2000.
 
[18]  COSTA, M.C.B; OLIVEIRA, G.D.; HAAG, H.P. Nutrição mineral de hortaliças – Efeito da omissão dos macronutrientes e do boro, no desenvolvimento e na composição química de hortaliças. In: HAAG, H. P.; MINAMI, K.; Nutrição mineral em hortaliças. Campinas: Fundação Cargill, 1981, cap. 6, p.257-276.
 
[19]  Pedrosa J.F., Mizubuti A., Casali V.W.D., Campos J.P. “Caracterização Morfológica de Introduções de Quiabeiro (Abelmoschus esculentus (L.) Moench)”. Horticultura Brasileira, 1:14-23, 1983.
 
[20]  MOTA, W.F.; FINGER, F.L.; SILVA, D.J.H.; CORRÊA, P.C.; FIRME, L.P.; NEVES, L.L.M. “Caracterização físico-química de frutos de quatro cultivares de quiabo”. Horticultura Brasileira, Brasília, v.23, n.3, 722-725, 2005.
 
[21]  Arapitsas P. “Identification and Quantification of Polyphenolic Compounds from Okra Seeds and Skins”. Food Chem, 110:1041-45, 2008.
 
[22]  Agarwal M., Rajani S., Mishra A., Rai J. “Utilization of okra gum for treatment of tannery effluent”. International Journal of Polymeric Materials, 52:1049-57, 2003.
 
[23]  Calado V., Montgomery D.C. Planejamento de Experimentos Usando o Statistica. E-papers, Rio de Janeiro, 2010.
 
[24]  Standard Methods for the Examination of Water and Wastewater, 21rd ed., Washington: American Public Heath Association, 2005.
 
[25]  Shukla D., Vankar, S. “Efficient biosorption of chromium (VI) ion by dry Araucaria leaves”. Environ Sci Pollut Res, 19(6):2321-28, 2012.
 
[26]  Santhana A., Kumar K., Kalidhasan S., Rajesh V., Rajesh N. “Application of Cellulose-Clay Composite Biosorbent toward the Effective Adsorption and Removal of Chromium from Industrial Wastewater”. Ind Eng Chem Res, 51:58-69, 2012.
 
[27]  Marshall W.E, Champagne E.T. “Agricultural byproducts as adsorbents for metal ions in laboratory prepared solutions and in manufacturing wastewater”. J Environ Sci Health A, 30(2): 241-61, 1995.
 
[28]  Altun T., Pehlivan E. “Removal of Cr(VI) from aqueous solutions by modifield walnud shells”. Food Chem, 132:693-700, 2012.
 
[29]  Bernardo L. Métodos e Técnicas de Tratamento de Água. ABES, Rio de Janeiro, 1993.
 
[30]  Pehlivan E., Cetin S., Yanik B.H. “Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash”. Journal Hazar Mater, 135(1):193-9, 2006.