American Journal of Sensor Technology
ISSN (Print): 2373-3454 ISSN (Online): 2373-3462 Website: Editor-in-chief: Vyacheslav Tuzlukov
Open Access
Journal Browser
American Journal of Sensor Technology. 2013, 1(1), 1-4
DOI: 10.12691/ajst-1-1-1
Open AccessArticle

Investigation on LaF3-Impregnated Porous Silicon Heterostructur as Potentionmetric Sensor for Fluoride Ion in Aqueous Medium

Md. Earul Islam1, , Md. Julkarnain2, Jaker Hossain2, Abu Bakar Md. Ismail2 and Md. Hafijur Rahman3

1Department of Materials Science and Engineering, Rajshahi University, Rajshahi, Bangladesh

2Department of Applied Physics & Electronic Engineering, Rajshahi University, Rajshahi, Bangladesh

3Department of Physics, Pabna University of Science & Technology, Pabna, Bangladesh

Pub. Date: October 08, 2013

Cite this paper:
Md. Earul Islam, Md. Julkarnain, Jaker Hossain, Abu Bakar Md. Ismail and Md. Hafijur Rahman. Investigation on LaF3-Impregnated Porous Silicon Heterostructur as Potentionmetric Sensor for Fluoride Ion in Aqueous Medium. American Journal of Sensor Technology. 2013; 1(1):1-4. doi: 10.12691/ajst-1-1-1


Impregnation of pores of porous silicon (PS) by Lanthanum Fluoride (LaF3) using a novel one-step chemical bath technique, and application of the LaF3-impregnated porous silicon (PS) structure (LaF3/PS) as a potentiometric fluoride ion sensor have been investigated in this article. The impregnation of LaF3 inside the pores of porous silicon was achieved using a chemical bath technique developed by this group. The Scanning Electron Microscopy (SEM) and EDX on the cross-section of LaF3/PS/Si structure confirmed the LaF3 film deposition inside the pores of PS. The heterostructure of LaF3/PS/Si was investigated as fluoride ion (F-) sensor in aqueous medium. The high specific area of PS was taken as the key subject to investigate the high fluoride sensitivity of the LaF3/PS structure in aqueous medium. When experimented with home made fluoride solution having various concentrations the annealed LaF3/PS/Si structure was found to detect the fluoride ion in aqueous solution. Its response was found linear in the fluoride concentration range of 2.28~4.28 pF. As capacitive sensor the overall fluoride sensitivity was found to be over-Nernstian (400 mV/pF). The experimental results indicate that LaF3-impregnated porous silicon structure (LaF3/PS) can be used as a high-sensitive fluoride-ion sensor in aqueous medium.

porous silicon potentiometric sensor fluoride sensor capacitive EIPS structure

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 7


[1]  Anglin, E. J., L. Cheng, W. R. Freeman and M. J. Sailor (2008). Advanced Drug Delivery Reviews, Vol.60, pp. 1266-1277.
[2]  Huy, B., P. V. Hoi, P. H. Khoi, D. K. Van, P. T. Binh and T. T. Cham (2009). Journal of Physics: Conference Series, Vol.187, pp. Article number 012033.
[3]  Xiong, Z., F. Zhao, J. Yang and X. Hu, Applied Physics Letters, 96, 181903 (2010).
[4]  Lehmann, V.; Hönlein, W.; Reisinger, H.; Spitzer, A.; Wendt, H.; Willer, J. A novel capacitor technology based on porous silicon. Thin Solid Films, 276, 138 (1996).
[5]  Schöning, M. J.; Kurowski, A.; Thust, M.; Kordos, P.; Schultze, J. W.; Lüth, H. Sens. Act. B 64, 59 (2000).
[6]  Barret, S.; Gaspard, F.; Herino, R.; Ligeon, M.; Muller, F.; Ronga, I. Porous silicon as a material in microsensor technology. Sens. Act. A, 33, 19 (1992).
[7]  Smith, R. L.; Scott, D. C. An integrated sensor for electrochemical measurements. IEEE Trans. Biomed. Eng, 33, 83 (1986).
[8]  Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng, BME-17, 70 (1970).
[9]  M. Diesendorf, J Colquhoun, B J Spittle, D N Everingham and F W Clutterbuc, Fluoride, 30, 179 (1997).
[10]  T. Gotjamanos, Aust. Dent. J. 42, 166 (1997).
[11]  T. Ichichi, M. Shoichi, M. Ishizuka, Japanese Patent 07, 55, 768, Riken Keiki (1995).
[12]  Wei G, Yin J, Ma X, Yu S, Wei D, Du Y, Anal Chim Acta, 703, 219 (2011).
[13]  S. Guha and S. Saha, J. Am. Chem. Soc, 132, 17674 (2010).
[14]  A. B. M. Ismail, K. Furuichi, T. Yoshinobu and H. Iwasaki, Sens. Actuat. B, 86, 94 (2002).
[15]  T. Katsube, M. Hara, I. Serizawa, Jpn. J. Appl. Phys. 29, L392 (1990).
[16]  J. Lukaszewicz, N. Miura, N. Yamazoe, Sens. Actuat. 1, 195 (1990).
[17]  N. Miura, J. Hisamoto, N. Yamazoe, S. Kuwata, J. Salardenne, Sens. Actuat, 16, 301 (1989).
[18]  S. Harke, H.D. Wiemhöfer,W. Göpel, Sens. Actuat. B, 1, 188 (1990).
[19]  S. Sinharoy, R. A. Hoffman, J. H. Rieger, W. J. Takei, and R. F. C. Farrow, J. Vac. Sci. Technol. B, 3, 722 (1985).
[20]  S. Sinharoy, R. A. Hoffman, A. Rohatgi, R. F. C. Farrow, and J. H. Rieger, J. Appl. Phys. 59, 273 (1986).
[21]  R. Strumpler, D. Guggi, H. Luth, Thin Sol. Films, 198, 221 (1991).
[22]  W. Moritz, I. Meierhofer and L. Muller, Sens. Actut, 15, 211 (1988).
[23]  R. Hintsche et al, Anal. Lett, 22, 2175 (1989).
[24]  R. Hintsche et al, Biosens. Bioelec, 5, 327 (1990).
[25]  R. Hintsche, I. Dransfeld, Anal. Lett, 23, 451 (1990).
[26]  Dransfeld et al, Anal. Chem, 333, 23 (1988).
[27]  Z. M. Baccar, N. Jaffrezic-Renault, C. Martelet, J. Mater. Sci, 32, 4221 (1997).
[28]  T. Gabusjan, L. Bartholomaus, W. Moritz, Sens. Mater, 5, 263 (1998).
[29]  A. B. M. Ismail, R. Islam, K. Furuichi, T. Yoshinobu, H. Iwasaki, IIUM Eng. J, 6, 37 (2005).
[30]  A. A. Mortuza1, M. H. Rahman, S. S. Mou, M. Julkernain, A. B. M. Ismail, Int. J. Mat. Chem, 111 (2012).
[31]  S. Zairi, C. Martelet, N. Jaffrezic-Renault, R. M’gaieth, H. Maaref, R. Lamartine, Thin sol. Film, 383, 325 (2001).
[32]  R. C. Sikder, S. S. Mou, A. Rahman and A. B. M. Ismail, Sens. Act. B, 135, 488 (2009).
[33]  Andrea Edit Pap,
[34]  R. Sabet-Dariani, N. S. McAlpine, and D. Haneman, J. Appl. Phy, 75, 8008 (1994).
[35]  A. B. M. Ismail, K. Furuichi, T. Yoshinobu, and H. Iwasaki, Sens. Actuat. B, 71, 169 (2000).