American Journal of Sports Science and Medicine
ISSN (Print): 2333-4592 ISSN (Online): 2333-4606 Website: Editor-in-chief: Ratko Pavlović
Open Access
Journal Browser
American Journal of Sports Science and Medicine. 2020, 8(1), 16-19
DOI: 10.12691/ajssm-8-1-3
Open AccessArticle

Stem Cells: A Reformist Therapeutic Approach to Orthopaedic Sports Medicine

Onur ORAL1, , George NOMIKOS2 and Nikitas NOMIKOS3, 4

1Ege University, Faculty of Sports Sciences, Izmir, Turkey

2Chios Hospital, Department of Orthopaedic Surgery, Chios, Greece

3School of Physical Education & Sport Science, National & Kapodistrian University of Athens

4Medical School, National & Kapodistrian University of Athens

Pub. Date: April 09, 2020

Cite this paper:
Onur ORAL, George NOMIKOS and Nikitas NOMIKOS. Stem Cells: A Reformist Therapeutic Approach to Orthopaedic Sports Medicine. American Journal of Sports Science and Medicine. 2020; 8(1):16-19. doi: 10.12691/ajssm-8-1-3


Background: The aim of the research is to identify, study the effects of stem cell therapies on sports injuries and examine how stem cell therapies may benefit the healing process and improve the athletes' physical state. With an extensive literature review, the purpose of this article to investigate the true potentials of regenerative stem cell therapy and shed light on innovative ways of treatment for sports injuries. It is theorized that stem cell therapy is an efficient and effective treatment method for sports injuries. Stem cell therapy is an innovative way of treating musculoskeletal injuries to provide faster and safer treatment to athletes. As sports injuries are one of the major concerns of the athletes, stem cell therapies are quite promising with effective and safe results. It is possible to fully heal certain injuries, regain functions, and reduce symptoms. Stem cell therapy is a method that should be popularised and preferred particularly by athletes.

stem cell musculoskeletal injuries sport injury

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Ajibade, D.A., Vance, D.D., Hare, J.M., Kaplan, L.D., Lesniak, B.P. (2014) Emerging Applications of Stem Cell and Regenerative Medicine to Sports Injuries. Orthop J Sports Med. 2014 Feb 6; 2(2): 2325967113519935.
[2]  Franklin, D. (2013). A dangerous game. Sci Am; 308(2): 27-28.
[3]  Pennington, B. (2007). For Athletes, the Next Fountain of Youth? The New York Times.
[4]  Bone and Joint Initiative. (2008). The Burden of Musculoskeletal Diseases in the United States: Prevalence, Societal and Economic Cost. Rosemont, IL: American Association for Orthopaedic Surgeons.
[5]  Nae, S., Bordeianu, I., Stancioiu, A. T., & Antohi, N. (2013). Human adipose-derived stem cells: Definition, isolation, tissue-engineering applications. Romanian Journal of Morphology and Embryology, 54(4), 919-924.
[6]  de Lazaro, I., Yilmazer, A., & Kostarelos, K. (2014). Induced pluripotent stem (iPS) cells: A new source for cell-based therapeutics? Journal of Controlled Release, 185, 37-44.
[7]  Ardeshiry Lajimi, A., Hagh, M. F., Saki, N., Mortaz, E., Soleimani, M., & Rahim, F. (2013). Feasibility of cell therapy in multiple sclerosis: A systematic review of 83 studies. International Journal of Hematology-Oncology and Stem Cell Research, 7(1), 15-33.
[8]  Azizidoost, S., Bavarsad, M. S., Bavarsad, M. S., Shahrabi, S., Jaseb, K., Rahim, F., Shahjahani, M., Saba, F., Ghorbani, M., & Saki, N. (2015). The role of notch signaling in bone marrow niche. Hematology, 20(2), 93-103.
[9]  Dehghanifard, A., Shahjahani, M., Galehdari, H., Rahim, F., Hamid, F., Jaseb, K., Asnafi, A. A., Jalalifar, M. A., & Saki, N. (2013). Prenatal diagnosis of different polymorphisms of beta-globin gene in Ahvaz. International Journal of Hematology-Oncology and Stem Cell Research, 7(2), 17-22.
[10]  Ebrahimi, A., & Rahim, F. (2014). Recent immunomodulatory strategies in transplantation. Immunological Investigations, 43(8), 829-837.
[11]  Ebrahimi, A., Hosseini, S. A., & Rahim, F. (2014). Immunosuppressive therapy in allograft transplantation: From novel insights and strategies to tolerance and challenges. Central-European Journal of Immunology, 39(3), 400-409.
[12]  Rahim, F., Allahmoradi, H., Salari, F., Shahjahani, M., Fard, A. D., Hosseini, S. A., & Mousakhani, H. (2013). Evaluation of signaling pathways involved in gamma-globin gene induction using fetal hemoglobin inducer drugs. International Journal of Hematology-Oncology and Stem Cell Research, 7(3), 41-46.
[13]  Saeidi, S., Jaseb, K., Asnafi, A. A., Rahim, F., Pourmotahari, F., Mardaniyan, S., Yousefi, H., Alghasi, A., Shahjahani, M., & Saki, N. (2014). Immune thrombocytopenic Purpura in children and adults: A comparative retrospective study in IRAN. International Journal of Hematology-Oncology and Stem Cell Research, 8(3), 30-36.
[14]  Saki, N., Jalalifar, M. A., Soleimani, M., Hajizamani, S., & Rahim, F. (2013). Adverse effect of high glucose concentration on stem cell therapy. International Journal of Hematology-Oncology and Stem Cell Research, 7(3), 34-40.
[15]  Shahrabi, S., Azizidoost, S., Shahjahani, M., Rahim, F., Ahmadzadeh, A., & Saki, N. (2014). New insights in cellular and molecular aspects of BM niche in chronic myelogenous leukemia. Tumour Biology, 35(11), 10627-10633.
[16]  Rahim, S., Rahim, F., Shirbandi, K., Haghighi, B.B., Arjmand, B. (2018) Sports Injuries: Diagnosis, Prevention, Stem Cell Therapy, and Medical Sport Strategy. In: Pham P. (eds) Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1084. Springer, Cham.
[17]  Årøen, A. (2011). Stem cell therapy for articular cartilage defects. British medical bulletin, 99(1), 227.
[18]  Awad, H.A., Halvorsen, Y.D., Gimble, J.M., Guilak, F. (2003). Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng; 9:1301-1312.
[19]  Markoulaki, S., Meissner, A., & Jaenisch, R. (2008). Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse. Methods, 45(2), 101-114.
[20]  Barry, F., Boynton, R.E., Liu, B., Murphy, J.M. (2001). Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Rez; 268: 189- 200.
[21]  Colter, D.C., Sekiya, I., Prockop, D.J. (2001). Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci U S A; 98: 7841-5.
[22]  Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science; 284: 143-7.
[23]  Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J., Kessler, P.D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation; 105: 93- 8.
[24]  Murphy, J.M., Fink, D.J., Hunziker, E.B., Barry, F.P. (2003). Stem cell therapy in a caprine model of osteoarthritis.
[25]  Anjos-Afonso, F., Bonnet, D. (2007). Nonhematopoietic/ endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood; 109: 1298-306.
[26]  Bianco, P., Robey, P.G., Simmons, P.J. (2008). Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell; 2: 313-9.
[27]  In't Anker, P.S., Scherjon, S.A., Kleijburg-van der Keur, C., de Groot-Swings, G.M., Claas, F.H., Fibbe, W.E., et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004; 22: 1338-45.
[28]  Chong, A.K., Ang, A.D., Goh, J.C., Hui, J.H., Lim, A.Y., Lee, E.H., & Lim, B.H. (2007). Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. The Journal of Bone and Joint Surgery. American Volume, 89(1), 74-81.
[29]  Ouyang, H.W., Goh, J.C., Thambyah, A., Teoh, S. H., & Lee, E. H. (2003). Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Engineering, 9(3), 431-439.
[30]  Silva, A., Sampaio, R., Fernandes, R., & Pinto, E. (2014). Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA, 22(1), 66-71.
[31]  Kanaya, A., Deie, M., Adachi, N., Nishimori, M., Yanada, S., & Ochi, M. (2007). Intra-articular injection of mesenchymal stromal cells in partially torn anterior cruciate ligaments in a rat model. Arthroscopy: The Journal of Arthroscopic & Related Surgery: Official Publication of the Arthroscopy Association of North America and the International Arthroscopy Association, 23(6), 610-617.
[32]  Figueroa, D., Espinosa, M., Calvo, R., Scheu, M., Vaisman, A., Gallegos, M., & Conget, P. (2014). Anterior cruciate ligament regeneration using mesenchymal stem cells and collagen type I scaffold in a rabbit model. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA, 22(5), 1196-1202.
[33]  Vannini, F., Cavallo, M., Ramponi, L., Castagnini, F., Massimi, S., Giannini, S., & Buda, R. E. (2017). Return to sports after bone marrow-derived cell transplantation for osteochondral lesions of the talus. Cartilage, 8(1), 80-87.
[34]  Sheyn, D., Kallai, I., Tawackoli, W., et al. (2011). Gene-modified adult stem cells regenerate vertebral bone defect in a rat model. Mol Pharm; 8: 1592-1601.
[35]  Centeno, C.J., Busse, D., Kisiday, J., et al. (2008). Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician; 11: 343-53
[36]  Ota, S., Uehara, K., Nozaki, M., et al. (2011). Intramuscular transplantation of muscle-derived stem cells accelerates skeletal muscle healing after contusion injury via enhancement of angiogenesis. Am J Sports Med; 39: 1912-1922.
[37]  Horie, M., Sekiya, I., Muneta, T., et al. (2009). Intra-articular injected stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilisation to distant organs in rat massive meniscal defect. Stem Cells; 27: 878-887.
[38]  Izuta, Y., Ochi, M., Adachi, N., Deie, M., Yamasaki, T., Shinomiya, R. (2005). Meniscus repair using bone marrow-derived mesenchymal stem cells: experimental study using green fluorescent protein transgenic rats. Knee; 12: 217-223.
[39]  Dave, L. Y., Nyland, J., McKee, P. B., & Caborn, D. N. (2012). Mesenchymal stem cell therapy in the sports knee: where are we in 2011? Sports health, 4(3), 252-257.