American Journal of Systems and Software
ISSN (Print): 2372-708X ISSN (Online): 2372-7071 Website: http://www.sciepub.com/journal/ajss Editor-in-chief: Josué-Antonio Nescolarde-Selva
Open Access
Journal Browser
Go
American Journal of Systems and Software. 2016, 4(1), 1-13
DOI: 10.12691/ajss-4-1-1
Open AccessArticle

An Ecological Model for Predicting Behaviour of Mediterranean Shrublands

José Luis Usó-Doménech1, Josué-Antonio Nescolarde-Selva1, , Miguel Lloret-Climent1 and Lucía González-Franco1

1Department of Applied Mathematics, University of Alicante, Alicante, Spain

Pub. Date: January 12, 2016

Cite this paper:
José Luis Usó-Doménech, Josué-Antonio Nescolarde-Selva, Miguel Lloret-Climent and Lucía González-Franco. An Ecological Model for Predicting Behaviour of Mediterranean Shrublands. American Journal of Systems and Software. 2016; 4(1):1-13. doi: 10.12691/ajss-4-1-1

Abstract

In order to build dynamic models for prediction and management of degraded Mediterranean forest areas was necessary to build MARIOLA model, which is a calculation computer program. This model includes the following subprograms. 1) bioshrub program, which calculates total, green and woody shrubs biomass and it establishes the time differences to calculate the growth. 2) selego program, which builds the flow equations from the experimental data. It is based on advanced procedures of statistical multiple regression. 3) VEGETATION program, which solves the state equations with Euler or Runge-Kutta integration methods. Each one of these subprograms can act as independent or as linked programs.

Keywords:
allometric equations biomass flow equations multiple regression state equations transformed functions

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 10

References:

[1]  Anderson, F. 1970. Ecological Studies in a Scanian woodland and meadow area, Southern Sweden. II. Plant biomass, primary production and turnover of organic matter. Bot. Notiser, 123. 8-51.
 
[2]  Azmi, M., Razali, W., Mohd, W. and Ahmad, F. 1991. Characteristics and Volume-Weight Relationship of four Malaysian Bamboos. Journal of Tropical Forest Science. 4(1), 87-93.
 
[3]  Bellod-Calabuig, F. and Belda-Antolí, J.A. 2013. Plantas medicinales de la Sierra de Mariola. Universidad de Alicante. Alicante. España.
 
[4]  Bliss, L.C. 1986. Plant productivity in alpine micro-environments on Mt. Washington, New Hampshire. Ecol. Mongr. 36. 125-155.
 
[5]  Boutoon, T.W. and Tieszen, L.L. 1983. Estimation of plant biomass by spectral reflectance in a East African grassland. J. Range Management. 36. 213-216.
 
[6]  Chapman, S.B. 1986. Production ecology and nutrient budgets. In: Methods in Plant Ecology (Editors P.D. Moore and S.B. Chapman). Blackwell, Oxford. 1-35.
 
[7]  Cortés, M., Villacampa, Y., Mateu, J. and Usó, J.L. 2000. A new methodology for modelling highly structured systems. Environmental Modelling and Software, 15, 461-470.
 
[8]  Forrester, J.W. 1961. Industrial Dynamics. MIT Press. Cambridge. Massachusetts.
 
[9]  Gualda-Gomez, Cl. E. 1988. La sierra de Mariola: Aspectos geomorfologicos y biogeograficos. Universidad de Alicante. Alicante. España.
 
[10]  Hussey, A. and Long, S. 1982. Seasonal changes in weight of above –and below- ground vegetation and dead material in a salt marsh at Colne Point, Essex. J. Ecol. 70. 757-772.
 
[11]  Jensen, A. 1980. Seasonal changes in near IR relectance ratio and standing crop biomass in a salt marsh dominated by Halimione portulacoides. New Phytol. 86. 57-68.
 
[12]  Jorgensen, S. E. 1988. Fundamentals of Ecological Modelling. Developments in Environmental Modelling, 9. Elsevier. Amsterdam-Oxford-New York.
 
[13]  Kittredge, J. 1944. Estimation of the amount of foliage of tress and stands. J. For. 42. 905-912.
 
[14]  Kumar, N. and Monteith, J.L. 1982. Remote sensing of crop growth. In: Plants and Daylight spectrum (Editos H. Smith). 133-144.
 
[15]  Mark, A.F. 1965. The environment and growth rate of narrow-leaved snow tussock, Chionochloa rigida, in Otago. N.Z.J. Bot., 3. 73-103.
 
[16]  Mateu, J., Usó, J.L, Montes, F. 1998. The Spatial Pattern of a Forest Ecosystem. Ecological Modelling. 108, 163-174.
 
[17]  Mayhew, P.W., Burns, M.D. and Houston, D.C. 1984. An inexpensive and simple spectophotometer for measuring grass biomass in the field. Oikos. 43. 62-67.
 
[18]  Nescolarde-Selva., J.A, Usó-Doménech, J. L. and Lloret-Climent, M. 2014. Introduction to coding theory for flow equations of complex systems models. American Journal of Systems and Software. 2(6). pp. 146-150.
 
[19]  Nescolarde-Selva, J.A, Usó-Doménech, J.L., Lloret- Climent, M. and González-Franco, L. 2015. Chebanov law and Vakar formula in mathematical models of complex systems. Ecological Complexity. 21. pp. 27-33.
 
[20]  Newbould, P.J. 1967. Methods for estimating the primary production of forests. IBP Handbook nº 2. Blackwell Scientific Productions. Oxford.
 
[21]  Ovington, J.D. and Madgwick, H.A.I. 1959. The growth and composition of natural stands of birch. I. Dry matter production. 10. 271-283.
 
[22]  Pastor, J., Aber, J.D and Melillo, J.M. 1984. Biomass Prediction using generalized allometric regressions for some northeast tree species. Forest Ecology and Management. 7, 265-274.
 
[23]  Pearson, J.A., Knight, D.H. and Fahey, T.J. 1987. Biomass and Nutrient Accumulation during Stand Development in Wyoming Lodgepole Pine Forests. Ecology. 68(6). 1966-1973.
 
[24]  Sastre-Vazquez, P., Usó-Domènech, J.L, Villacampa, Y., Mateu, J. and Salvador, P. 1999. Statistical Linguistic Laws in Ecological Models. Cybernetics and Systems: An International Journal. Vol 30. 8. 697-724.
 
[25]  Sastre-Vazquez, P., Usó-Domènech, J.L. and Mateu, J. 2000. Adaptation of linguistics laws to ecological models. Kybernetes, 29 (9/10). 1306-1323.
 
[26]  Scott, D. 1961. Methods of measuring growth in short tussocks. N.Z.J agric Res. 4. 282-285.
 
[27]  Steven, M.D., Biscoe, P.V. and Jaggard, K.W. 1983. Estimation of sugar beet productivity from reflection in the red and infrared spectral bands. Int. J. Remote Sensing 4(2). 325-334.
 
[28]  Stübing, G., Peris, J.B. and Costa, M. 1989. Los matorrales seriales termófilos valencianos. Phytocoenologia. 17, 1-69.
 
[29]  Trocaud, L. 1977. Materiaux combustibles et phytomasses aeriennes du Midi mediterraneen francais. Marti et Bosch 28(4). 18-49. (In French).
 
[30]  Usó-Domènech, J.L., Villacampa, Y., Stübing, G., Karjalainen, T. & Ramo, M.P. 1995. MARIOLA: a model for calculating the response of Mediterranean bush ecosystem to climatic variations. Ecological Modelling. 80, 113-129.
 
[31]  Usó-Domènech, J. L., Mateu, J and J.A. Lopez. 1997. Mathematical and Statistical formulation of an ecological model with applications. Ecological Modelling. 101, 27-40.
 
[32]  Usó, J.L., Mateu, J., Karjalainen, T. and Salvador, P. 1997. Allometric Regression Equations to Determine Aerial Biomasses of Mediterranean Shrubs. Plant Ecology. 132, 59-69.
 
[33]  Usó-Domènech, J.L., Mateu, J. and Lopez, J.A. 2000. MEDEA: software development for prediction of Mediterranean forest degraded areas. Advances in Engineering Software. 31, p 185-196.
 
[34]  Usó-Domènech, J.L., Sastre-Vazquez, P. 2002. Semantics of L(MT): A Language for Ecological Modelling. Kybernetes 31 (3/4), 561-576.
 
[35]  Usó-Domènech, J.L., Vives Maciá, F. and Mateu. J.. 2006a. Regular grammars of L(MT): a language for ecological systems modelling (I) –part I. Kybernetes 35 nº6, 837-850.
 
[36]  Usó-Domènech, J.L., Vives Maciá, F. and Mateu. J.. 2006b. Regular grammars of L(MT): a language for ecological systems modelling (II) –part II. Kybernetes 35 (9/10), 1137-1150.
 
[37]  Usó-Doménech, J. L., Nescolarde-Selva, J., Lloret-Climent, M. 2014. Saint Mathew Law and Bonini Paradox in Textual Theory of Complex Models. American Journal of Systems and Software.2 (4), pp. 89-93.
 
[38]  Usó-Doménech, J. L., Nescolarde-Selva, J. 2014. Dissipation Functions of Flow Equations in Models of Complex Systems. American Journal of Systems and Software. 2 (4), pp. 101-107.
 
[39]  Usó-Doménech, J. L., Nescolarde-Selva, J.A. and Lloret-Climent, M. 2015. Syntactic and Semantic Relationships in Models of Complex Systems: An Ecological Case. American Journal of Systems and Software. 3(4), pp 73-82.
 
[40]  Villacampa, Y., Usó-Domènech, J.L., Mateu, J. Vives, F. and Sastre, P. 1999. Generative and Recognoscitive Grammars in Ecological Models. Ecological Modelling 117, 315-332.
 
[41]  Villacampa, Y. and Usó-Domènech, J.L. 1999. Mathematical Models of Complex Structural systems. A Linguistic Vision. Int. Journal of General Systems. Vol 28, no1, 37-52.
 
[42]  Westman, W.E. and Paris, J.F. 1987. Detecting Forest structure and Biomass with C-borel multipolarisation radar: Physical model and fields tests. Remote sensing of environment. 22. 249-269.