American Journal of Systems and Software
ISSN (Print): 2372-708X ISSN (Online): 2372-7071 Website: http://www.sciepub.com/journal/ajss Editor-in-chief: Josué-Antonio Nescolarde-Selva
Open Access
Journal Browser
Go
American Journal of Systems and Software. 2014, 2(4), 101-107
DOI: 10.12691/ajss-2-4-4
Open AccessArticle

Disipation Functions of Flow Equations in Models of Complex Systems

J.L. Usó-Doménech J.1 and Nescolarde -Selva1,

1Department of Applied Mathematics. University of Alicante. Alicante. Spain

Pub. Date: August 07, 2014

Cite this paper:
J.L. Usó-Doménech J. and Nescolarde -Selva. Disipation Functions of Flow Equations in Models of Complex Systems. American Journal of Systems and Software. 2014; 2(4):101-107. doi: 10.12691/ajss-2-4-4

Abstract

In an open system, each disequilibrium causes a force. Each force causes a flow process, these being represented by a flow variable formally written as an equation called flow equation, and if each flow tends to equilibrate the system, these equations mathematically represent the tendency to that equilibrium. In this paper, the authors, based on the concepts of forces and conjugated fluxes and dissipation function developed by Onsager and Prigogine, they expose the following hypothesis: Is replaced in Prigogine’s Theorem the flow by its equation or by a "flow orbital" considering conjugate force as a gradient. This allows to obtain a dissipation function for each flow equation and a function of orbital dissipation.

Keywords:
conjugate forces dissipation function equilibrium flow equations flow process flow orbital synonymous equations

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Forrester, J. W. 1961. Industrial Dynamics. MIT Press. Cambridge. MA.
 
[2]  Gladkij, A.V. and Mel’Cuk, I.A., 1972. Introducción a la linguística matemática. Editorial Planeta. Barcelona. Translated of Russian: Mezhdunarodnaia-Kniga. 1972. Moscow. (In Spanish).
 
[3]  Jorgensen, S.E. 1988. Fundamentals of Ecological Modelling. Elsevier. Amsterdam.
 
[4]  Jou, D and Llebot, J.E. 1989. Introducción a la Termodinámica de Procesos Biológicos. Labor Universitaria. Manuales. Editorial Labor. Barcelona. (In Spanish).
 
[5]  Prigogine, I. 1955. Thermodynamics of Irreversible Processes. Ch. Thomas Press. Springfield.
 
[6]  Sastre-Vazquez, P., Usó-Domènech, J.L., Mateu, J., Salvador, P. and Villacampa, Y.. 1999. Statistical Linguistic Laws in Ecological Models. Cybernetic and Systems: an International Journal. 30 (8). 697-724.
 
[7]  Sastre-Vazquez, P., Usó-Domènech, J.L. and Mateu, J. 2000. Adaptation of linguistics laws to ecological models. Kybernetes.. 29 (9/10). 1306-1323.
 
[8]  Shannon, C.B. 1948. A Mathematical Theory of Communication. Bell Systems Tech, J. 27, 379-423, 623-656.
 
[9]  Usó-Domenech, J.L., Villacampa, Y, Stubing, G., Karjalainen, T and Ramo, M, 1995 MARIOLA: A model for calculating the reponse of mediterranean bush ecosystem to climatic variations. Ecological Modelling, 80, 113-129.
 
[10]  Usó-Domenech, J.L., Mateu, J. and López, J.A. 1997a. Mathematical and Statistical Formulation of an Ecological Model with Applications. Ecological.Modelling, 101, 27-40.
 
[11]  Usó-Domènech, J. L., J. Mateu, Y. Villacampa, and P. Salvador. 1997b. Adjustment versus meaning?. Towards a quantic theory of ecological models. In: Ecosystems and Sustainable Development (J.L. Usó, C. Brebbia and H. Power Editors).. Advances in Ecological Sciences. Vol I. Computational Mechanics Publications. Southampton-Boston. 375-393.
 
[12]  Usó-Domènech, J.L., Mateu, J., Villacampa, Y., and Sastre-Vazquez, P. 2000. A proposal of Uncertainty and Complementary Principles in Flow Equations of Ecological Models. Cybernetic and Systems: an International Journal. 31 (2), p 137-160.
 
[13]  Usó-Domènech, J.L., P. Sastre-Vazquez, J. Mateu. 2001. Syntax and First Entropic Approximation of L(MT): A Language for Ecological Modelling. Kybernetes. 30 (9/10). 1304-1318.
 
[14]  Usó-Domènech, J.L., Sastre-Vazquez, P. 2002. Semantics of L(MT): A Language for Ecological Modelling. Kybernetes 31 (3/4), 561-576.
 
[15]  Usó-Domènech, J.L, Vives Maciá, F. and Mateu. J.. 2006a. Regular grammars of L(MT): a language for ecological systems modelling (I) –part I. Kybernetes 35 n 6, 837-850.
 
[16]  Usó-Domènech, J.L, Vives Maciá, F. and Mateu. J.. 2006b. Regular grammars of L(MT): a language for ecological systems modelling (II) –part II. Kybernetes 35 (9/10), 1137-1150
 
[17]  Villacampa, Y. and Usó-Domènech, J.L. 1999a. Mathematical Models of Complex Structural systems. A Linguistic Vision. Int. Journal of General Systems. Vol 28, no 1, 37-52.
 
[18]  Villacampa, Y. and Usó-Domènech, J.L. 1999b. Mathematical Models of Complex Structural systems. A Linguistic Vision. Int. Journal of General Systems. 28 (1), 37-52.
 
[19]  Villacampa, Y., Usó-Domènech, J.L., Mateu, J. Vives, F. and Sastre, P. 1999a. Generative and Recognoscitive Grammars in Ecological Models. Ecological Modelling. 117, 315-332.
 
[20]  Villacampa, Y., Usó-Domènech, J.L., Castro, M.A. and Sastre-Vazquez, P. 1999b. A Text Theory of Ecological Systems. Cybernetic and Systems: an International Journal. 30. 587-608.
 
[21]  Volkenshtein, M.V. 1981. Biofísica. Editorial Mir. Moscú. (In Spanish).