American Journal of Systems and Software
ISSN (Print): 2372-708X ISSN (Online): 2372-7071 Website: http://www.sciepub.com/journal/ajss Editor-in-chief: Josué-Antonio Nescolarde-Selva
Open Access
Journal Browser
Go
American Journal of Systems and Software. 2014, 2(4), 89-93
DOI: 10.12691/ajss-2-4-2
Open AccessArticle

Saint Mathew Law and Bonini Paradox in Textual Theory of Complex Models

J.L. Usó-Doménech1, J Nescolarde-Selva1, and M. Lloret-Climent1

1Department of Applied Mathematics, University of Alicante, Alicante, Spain

Pub. Date: July 18, 2014

Cite this paper:
J.L. Usó-Doménech, J Nescolarde-Selva and M. Lloret-Climent. Saint Mathew Law and Bonini Paradox in Textual Theory of Complex Models. American Journal of Systems and Software. 2014; 2(4):89-93. doi: 10.12691/ajss-2-4-2

Abstract

The mathematical models of the complex reality are texts belonging to a certain literature that is written in a semi-formal language, denominated L(MT) by the authors whose laws linguistic mathematics have been previously defined. This text possesses linguistic entropy that is the reflection of the physical entropy of the processes of real world that said text describes. Through the temperature of information defined by Mandelbrot, the authors begin a text-reality thermodynamic theory that drives to the existence of information attractors, or highly structured point, settling down a heterogeneity of the space text, the same one that of ontologic space, completing the well-known law of Saint Mathew, of the General Theory of Systems and formulated by Margalef saying: “To the one that has more he will be given, and to the one that doesn't have he will even be removed it little that it possesses."

Keywords:
complex models entropy grammar information temperature of information Zipf’s Law

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Bonini, Ch. P. 1963. Simulation of information and decision systems in the firm, Englewood Cliffs, N. J.: Prentice-Hall
 
[2]  Mandelbrot, B. 1954. Structure formelle des textes et communication. Deux études. Word, 10. 1-27.
 
[3]  Mandelbrot, B. 1961. Word frequencies and Markovian models of discourse. In: Structure of Language and its Mathematical Aspects, Proceedings of Symposia in Applied Mathematics, 12. American Mathematical Society, Providence, Rhode Island, 190-219.
 
[4]  Margalef, R. La Biosfera, entre la Termodinámica y el juego. Ediciones Omega, S.A. Barcelona. (In Spanish).
 
[5]  Nescolarde-Selva, J. and Usó-Doménech, J. L. 2013a. An introduction to Alysidal Algebra V: Phenomenological components. Kybernetes. Vol. 42 (8). pp. 1248 – 1264.
 
[6]  Nescolarde-Selva, J. and Usó-Doménech, J. L 2013b. Topological Structures of Complex Belief Systems (II): Textual Materialization. Complexity. Vol. 19, 2. 50-62
 
[7]  Sastre-Vazquez., P., J.L. Usó-Doménech, Y. Villacampa, J. Mateu and P. Salvador. 1999a. Statistical Linguistic Laws in Ecological Models. Cybernetics and Systems: An International Journal. Vol 30. 8. 697-724.
 
[8]  Sastre-Vazquez, P., Usó-Doménech, J.L. and Mateu, J. 2000b. Adaptation of linguistics laws to ecological models. Kybernetes.. 29 (9/10). 1306-1323.
 
[9]  Usó-Doménech, J. L., Mateu, J and J.A. Lopez. 1997. Mathematical and Statistical formulation of an ecological model with applications. Ecological Modelling. 101, 27-40.
 
[10]  Usó-Doménech, J.L., Villacampa, Y., Mateu, J., and Sastre-Vazquez, P. 2000a. A proposal of Uncertainty and Complementary Principles in Flow Equations of Ecological Models. Cybernetics and Systems: An International Journal. 31 (2), p 137-160.
 
[11]  Usó-Doménech, J.L., Villacampa, Y. 2001. Semantics of complex Structural Systems: Presentation and Representation. A synchronic vision of language L (MT). Int. Journal of General Systems. 30 (4). 479-501.
 
[12]  Usó-Doménech, J.L, P. Sastre-Vazquez, J. Mateu. 2001b. Syntax and First Entropic Approximation of L (MT): A Language for Ecological Modelling. Kybernetes. 30 (9/10). 1304-1318.
 
[13]  Usó-Doménech, J.L, Sastre-Vazquez, P. 2002. Semantics of L(MT): A Language for Ecological Modelling. Kybernetes. 31 (3/4), 561-576.
 
[14]  Usó-Doménech, J.L, Vives Maciá, F. And Mateu. J.. 2006a. Regular grammars of L (MT): a language for ecological systems modelling (I) –part I. Kybernetes. 35 nº6, 837-850.
 
[15]  Usó-Doménech, J.L, Vives Maciá, F. And Mateu. J.. 2006b. Regular grammars of L(MT): a language for ecological systems modelling (II) –part II. Kybernetes 35 (9/10), 1137-1150.
 
[16]  Villacampa, Y., Usó-Doménech, J.L., Mateu, J. Vives, F. and Sastre, P. 1999a. Generative and Recognoscitive Grammars in Ecological Models. Ecological Modelling. 117, 315-332.
 
[17]  Villacampa-Esteve, Y., Usó-Doménech, J.L., Castro-Lopez-M, A. and P. Sastre-Vazquez. 1999b. A Text Theory of Ecological Models. Cybernetics and Systems: An International Journal. Vol 30, 7. 587-607.
 
[18]  Villacampa, Y. and Usó-Doménech, J.L. 1999. Mathematical Models of Complex Structural systems. A Linguistic Vision. Int. Journal of General Systems Vo. l 28, no. 1, 37-52..
 
[19]  Zipf, G.K. 1949. Human Behavior and the Principle of Least Effort. Cambridge, Mass.