American Journal of Rural Development
ISSN (Print): 2333-4762 ISSN (Online): 2333-4770 Website: http://www.sciepub.com/journal/ajrd Editor-in-chief: Chi-Ming Lai
Open Access
Journal Browser
Go
American Journal of Rural Development. 2020, 8(1), 1-11
DOI: 10.12691/ajrd-8-1-1
Open AccessArticle

Sensivity of Crop Yields to Temperature and Rainfall Daily Metrics in Senegal

Abdou Kader Toure1, , Moussa Diakhaté1, Amadou Thierno Gaye1, Mbaye Diop2 and Ousmane Ndiaye3

1Laboratoire Physique de l’Atmosphère et de l’Océan - Siméon Fongang (LPAO-SF), UCAD, Dakar, Senegal

2Institut Sénégalais de Recherche Agricole (ISRA), Dakar, Senegal

3Agence Nationale de l’Aviation Civile et de la Météorologie (ANACIM), Dakar, Senegal

Pub. Date: March 04, 2020

Cite this paper:
Abdou Kader Toure, Moussa Diakhaté, Amadou Thierno Gaye, Mbaye Diop and Ousmane Ndiaye. Sensivity of Crop Yields to Temperature and Rainfall Daily Metrics in Senegal. American Journal of Rural Development. 2020; 8(1):1-11. doi: 10.12691/ajrd-8-1-1

Abstract

Senegal is a sub-Saharan country marked by rainfed agriculture, which is under the recurrent threat of climatic upheaval, mostly due to irregular rainfall and temperature. This study shows evidence of the influence of daily rainfall metrics on crop (groundnut and millet) yields. Statistical analysis has been carried out using observational datasets and over the period 1961-2018. The results show an increase in temperatures in our zone, which is in line with the decrease in groundnut yields. Also, significant correlations of 0.81 and 0.69 between the total rainfall indices and groundnut and millet have been found respectively. Rainfall intensity, length, and distribution would contribute up to 66% and 49% to the variability in groundnut and millet yields respectively. A decrease in crop yields is considerable during dry periods (18% for groundnut and 10% for millet) due to the occurrence of long dry spells and low rainfall distribution. The groundnut yield appears most affected by these indicators, while millet is more resistant in dry conditions. To face the major future challenges, it is essential to ensure that changes in these metrics are effectively taken into account in agro-climatic model simulations.

Keywords:
temperature rainfall metrics yield climate impacts sensivity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Hansen, J. W. (2002). Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges. Agricultural Systems 74 309-30.
 
[2]  Oram, P. A. (1989). Sensitivity of agricultural production to climatic change, an update. In International Symposium on Climate Variability and Food Security in Developing Countries, New Delhi (India), 5-9 Feb 1987. IRRI.
 
[3]  Pelling, M., Maskrey, A., Ruiz, P., Hall, L., Peduzzi, P., Dao, Q.-H., Mouton, F., Herold, C. and Kluser, S. (2004). Reducing disaster risk: a challenge for development.
 
[4]  Sultan, B., Defrance, D. and Iizumi, T. (2019). Evidence of crop production losses in West Africa due to historical global warming in two crop models. Scientific Reports 9 1-15.
 
[5]  Sultan, B., Roudier, P. and Traoré, S. (2015). Les impacts du changement climatique sur les rendements agricoles en Afrique de l’Ouest. In Les sociétés rurales face aux changements climatiques et environnementaux en Afrique de l’Ouest Synthèses (B. Sultan, R. Lalou, M. Amadou Sanni, A. Oumarou and M. A. Soumaré, ed) pp 209-25. IRD, Marseille.
 
[6]  Ndonky, A., Lalou, R. and Ndiaye, I. (2019). Analyse de la diffusion spatiale du sanio dans le sud-ouest du bassin arachidier du Sine (Sénégal). Cybergeo : European Journal of Geography.
 
[7]  Sylla C N et al. (2010). Deuxième communication nationale à la Convention Cadre des Nations Unies sur les Changements Climatiques. 112-3.
 
[8]  A Moorhead. (2009). Climate change, agriculture and food security: a strategy for change. Alliance of the CGIAR Centers.
 
[9]  Ndiaye, O., Ward, M. N. and Thiaw, W. M. (2011). Predictability of Seasonal Sahel Rainfall Using GCMs and Lead-Time Improvements Through the Use of a Coupled Model. J. Climate 24 1931-49.
 
[10]  Clavel, D. and N’Doye, O. (1997). La carte variétale de l’arachide au Sénégal. Agriculture et Développement.
 
[11]  Sarr, B., Kafando, L. and Atta, S. (2011). Identification des risques climatiques de la culture du maïs au Burkina Faso. International Journal of Biological and Chemical Sciences 5 1659-75.
 
[12]  Balme, M., Galle, S. and Lebel, T. (2005). Démarrage de la saison des pluies au Sahel : variabilité aux échelles hydrologique et agronomique, analysée à partir des données EPSAT-Niger. 16 8.
 
[13]  WINKEL, T. and DO, F. (1992). Caractères morphologiques et physiologiques de résistance du mil (Pennisetum glaucum (L.) R. Br.) à la sécheresse. Agron. trop. (1975) 46 339-51.
 
[14]  Salack, S., Giannini, A., Diakhaté, M., Gaye, Amadou. T. and Muller, B. (2014). Oceanic influence on the sub-seasonal to interannual timing and frequency of extreme dry spells over the West African Sahel. Clim Dyn 42 189-201.
 
[15]  Salack, S., Muller, B. and Gaye, A. T. (2011). Rain-based factors of high agricultural impacts over Senegal. Part I: integration of local to sub-regional trends and variability. Theor Appl Climatol 106 1-22.
 
[16]  Knox, J., Hess, T., Daccache, A. and Wheeler, T. (2012). Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 7 034032.
 
[17]  Müller, C., Cramer, W., Hare, W. L. and Lotze-Campen, H. (2011). Climate change risks for African agriculture. PNAS 108 4313-5.
 
[18]  Sultan, B., Roudier, P., Quirion, P., Alhassane, A., Muller, B., Dingkuhn, M., Ciais, P., Guimberteau, M., Traore, S. and Baron, C. (2013). Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environ. Res. Lett. 8 014040.
 
[19]  PA. (2019). Rapport du Programme Agricole 2019, Ministère de l’Agriculture et de l’Equipement rural du Sénégal.
 
[20]  Sultan Benjamin. (2002). Etude de la mise en place de la mousson en Afrique de l’Ouest et de la variabilité intra-saisonnière de la convection : Applications à la sensibilité des rendements agricoles. thesis, Paris 7.
 
[21]  Roudier, P., Muller, B., d’Aquino, P., Roncoli, C., Soumaré, M. A., Batté, L. and Sultan, B. (2014). The role of climate forecasts in smallholder agriculture: Lessons from participatory research in two communities in Senegal. Climate Risk Management 2 42-55.
 
[22]  Bodian, A. (2014). Caractérisation de la variabilité temporelle récente des précipitations annuelles au Sénégal (Afrique de l’Ouest). Physio-Géo. Géographie physique et environnement 297-312.
 
[23]  Faye, C., Sow, A. A. and Ndong, J. B. (2015). Étude des sècheresses pluviométriques et hydrologiques en Afrique tropicale : caractérisation et cartographie de la sècheresse par indices dans le haut bassin du fleuve Sénégal. Physio-Géo. Géographie physique et environnement 17-35.
 
[24]  ANSD. (2019). Projections démographiques.Available at http://www.ansd.sn/index.php?option=com_ansd&view=titrepublication&id=30.
 
[25]  FAO. (2011). The State of Food Insecurity in the World 2011.Available at http://www.fao.org/3/i2330e/i2330e00.htm.
 
[26]  Khouma M. (2002). Quatorzième réunion du Sous-Comité Ouest et Centre Africain de Corrélation des Sols pour la Mise en Valeur des Terres: Abomey, Bénin, 9 - 13 octobre 2000. Organisation des Nations Unies pour l’Alimentation et l’Agriculture, Rome.
 
[27]  Mayeux A. (2007). Rapport de synthèse de l’opération de production d’arachides de qualité 2006. 34.
 
[28]  Jacob, N. and Schilling, R. L. (2001). Lévy-Type Processes and Pseudodifferential Operators. In Lévy Processes: Theory and Applications (O. E. Barndorff-Nielsen, S. I. Resnick and T. Mikosch, ed) pp 139-68. Birkhäuser, Boston, MA.
 
[29]  ETCCDI. (2013). Expert Team on Climate Change Detection and Indices.Available at http://etccdi.pacificclimate.org/.
 
[30]  Sagna, P., Ndiaye, O., Diop, C., Niang, A. D. and Sambou, P. C. (2016). Les variations récentes du climat constatées au Sénégal sont-elles en phase avec les descriptions données par les scénarios du GIEC ? http://irevues.inist.fr/pollution-atmospherique. Available at http://lodel.irevues.inist.fr/pollutionatmospherique/index.php?id=5320&format=print.
 
[31]  Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C. and Girma, B. (2017). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, CB Field and others (eds.), Cambridge, Cambridge University Press.
 
[32]  Roudier, P., Kane, C., Leblois, A., Sultan, B., Weber, S. (2019). Deux exemples de stratégies de gestion du risque agricole en Afrique de l’Ouest : services climatiques et assurances indicielles. researchgate.net 18.
 
[33]  Schlenker, W. and Lobell, D. B. (2010). Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 5 014010.
 
[34]  Hathout, A. (1983). La régression d’après un nombre variable de voisins. 9.
 
[35]  Benzécri, J.-P. (1982). Construction d’une classification ascendante hiérarchique par la recherche en chaîne des voisins réciproques. Cahiers de l’analyse des données 7 209-18.
 
[36]  Gaye, A. T., Lo, H. M., Sakho-Djimbira, S., Fall, M. S. and Ndiaye, I. (2015). Sénégal: Revue du contexte socioéconomique, politique et environnemental. 88.
 
[37]  Camberlin, P. and Diop, M. (1999). Inter-Relationships Between Groundnut Yield in Senegal, Interannual Rainfall Variability and Sea-Surface Temperatures. Theor Appl Climatol 63 163-81.
 
[38]  Diakhaté, M., Rodríguez-Fonseca, B., Gómara, I., Mohino, E., Dieng, A. L. and Gaye, A. T. (2018). Oceanic Forcing on Interannual Variability of Sahel Heavy and Moderate Daily Rainfall. J. Hydrometeor. 20 397-410.