American Journal of Pharmacological Sciences
ISSN (Print): 2327-6711 ISSN (Online): 2327-672X Website: http://www.sciepub.com/journal/ajps Editor-in-chief: Srinivas NAMMI
Open Access
Journal Browser
Go
American Journal of Pharmacological Sciences. 2013, 1(4), 67-73
DOI: 10.12691/ajps-1-4-5
Open AccessReview Article

A Study on Solubility Enhancement Methods for Poorly Water Soluble Drugs

Praveen Kumar1, and Chhater Singh2

1S. D. College of Pharmacy & Vocational Studies, Muzaffarnagar, India

2Shri Venkateshwara University Rajabpur, Gajraula, India

Pub. Date: September 15, 2013

Cite this paper:
Praveen Kumar and Chhater Singh. A Study on Solubility Enhancement Methods for Poorly Water Soluble Drugs. American Journal of Pharmacological Sciences. 2013; 1(4):67-73. doi: 10.12691/ajps-1-4-5

Abstract

It is generally recognized that poor solubility is one of the most frequently encountered difficulties in the field of pharmaceutics. Low solubility and subsequent unsatisfactory dissolution rate often compromise oral bioavailability. There are most therapeutic agents used to produce systemic effects by oral route that are the preferred way of administration owing to its several advantages and high patient compliance compared to other routes. However, poorly water-soluble drugs, when administered orally, have been shown to be slowly and unpredictably absorbed since their bioavailability is largely dependent on the dissolution process in gastrointestinal tract. This article demonstrates the various methods used to increase dissolution rates, preparation techniques of solid dispersion, and characterization methods of the solid dispersion.

Keywords:
solubility bioavailability solid dispersion dissolution solvent evaporation method

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Okonogi, S., Yonemochi, E., Oguchi, T., Puttipipatkhachorn, S., Yamamoto, K.,. Enhanced dissolution of ursodeoxycholic acid from the solid dispersion. Drug Dev. Ind. Pharm. 1997, 23(11), 1115-1121.
 
[2]  Patravale, V.B., Date, A.A., Kulkarni, R.M.,. Nanosuspension: a promising drug delivery strategy. J. Pharm. Phamaco. 2004, 56(7), 827-840.
 
[3]  Habib, M.J., Pharmaceutical solid dispersion Technology, Technomic Publishing Company, Inc. Lancaster, Pennsylvania (U.S.A.). 2001, pp. 1-36.
 
[4]  Martin, M. T., Margarit, M.V., Salcedo, G.E., 2002. Characterization and solubility study of solid dispersions of flunarizine and plyvinyl pyrrolidone. Farmaco. , 2002, 57, 723-727.
 
[5]  Joshi, V.B., Tejwani, R.W., Davidovich, M., Saharabudhe, V.P., Jemal, M., Bathala, M.S., Varia, S.A., Serajuddin, A.T.M., Bioavalability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysobate80 mixture. 2004, 269, 251-258.
 
[6]  Chiou WL and Riegelman S. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci., 1971, 60(9): 1281-1302.
 
[7]  Verheyan, S., Blaton, N., Kinget, R., and Mooter, G. V., Mechanism of increased dissolution of diazepam and tamezepam from polyethylene glycol 6000 solid dispersions. Int. J. Pharm. 2002, 266, 82-99.
 
[8]  Dubois, J.L., and Ford, J.L., 1985. Similarities in the release rate of different drugs from polyethylene glycol 6000 solid dispersion. J.Phram. Pharmacol, 37, 494-496.
 
[9]  Jung, J.Y., Yoo, S.D.F., Lee, S.H., Kin, K.H., Yoon, D.S., Lee, K.H. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int. J. Pharm. 1999, 187, 209-218.
 
[10]  Leuner C, Dressman J, Improving drug solubility for oral delivery using solid dispersions, European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50, 47-60
 
[11]  Yu L, Amorphous pharmaceutical solids: preparation, characterization and stabilization, Advanced Drug Delivery Reviews. 2001, 48, 27-42.
 
[12]  Hancock BC, Zograf G, Characteristics and significance of the amorphous state in pharmaceutical systems, Journal of Pharmaceutical Sciences, 1997, 86, 1-12.
 
[13]  Goldberg AH, Gibaldi M, Kanig JL, Mayersohn M, Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV: chloramphenicol-urea system, Journal of Pharmaceutical Sciences, 1966, 55, 581-583.
 
[14]  Verheyen S, Blaton N, Kinget R, Van den Mooter G, Mechanism of increased dissolution of diazepam and temazepam from polyethylene glycol 6000 solid dispersions, International Journal of Pharmaceutics. 2002, 249, 45-58.
 
[15]  Konno H, Taylor LS, Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine, Journal of Pharmaceutical Sciences. 2006, 95, 2692-2705.
 
[16]  Tantishaiyakul V, Kaewnopparatv N, Ingkatawornwong S, Properties of solid dispersions of piroxicam in polyvinylpyrrolidone, International Journal of Pharmaceutics. 1999, 181, 143-151.
 
[17]  Van den Mooter G, Wuyts M, Blaton N, Bussonc R, Grobetd P, Augustijnsa P, Kinget R, Physical stabilization of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25, European Journal of Pharmaceutical Sciences. 2001, 12, 261–269.
 
[18]  Yoshioka M, Hancock BC, Zografi G, Inhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates, Journal of Pharmaceutical Sciences. 1995, 84, 983-986.
 
[19]  Simonelli AP, Mehta SC, Higuchi WI, Dissolution rates of high energy sulfathiazole-povidone coprecipitates II: characterization of form of drug controlling its dissolution rate via solubility studies, Journal of Pharmaceutical Sciences. 1976, 65, 355-361.
 
[20]  Usui F, Maeda K, Kusai A, Ikeda M, Nishimura K, Yamamoto K, Inhibitory effects of water-soluble polymers on precipitation of RS-8359, International Journal of Pharmaceutics. 1997, 154, 59-66.
 
[21]  Mart´ınez-Oha´rriz MC, Mart´ın C, Gon˜I MM, Rodr´ıguez-Espinosa C, Tros-Ilarduya MC, Zornoza A, Influence of polyethylene glycol 4000 on the polymorphic forms of diflunisal, European Journal of Pharmaceutical Sciences, 1999, 8, 127-132.
 
[22]  Chiou, W.L., Riegelman, S., Pharmceutical applications of Solid dispersion systems. J. Pharm. Sci. 1971, 60, 1281-1302.
 
[23]  Goldberg, A.H., Gibaldi, M., Kanig, J.L., Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. II. Experimental evalution of a eutectic mixture: urea-acetaminophen system. J. Pharm. Sci. 1966, 55, 482-487.
 
[24]  Chiou, W.L., Riegelman, S., Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin. J. Pharm. Sci. 1969, 58(12), 1505-1510.
 
[25]  Stupak, E.I., Bates, T.R.,. Enhanced absorption of digitoxin from orally administered digitoxin-polyvinylpyrrolidone coprecipitates. J. Pharm. Sci. 1973, 62(11), 1806-1809.
 
[26]  Geneidi, A.S., Ali, A.A., Salama, R.B.,. Solid dispersions of nitrofurantoin, ethotoin, and coumarin with polyethylene glycol 6000 and their coprecipitates with povidone 25000. J. Pharm. Sci. 1978, 67(1), 114-116.
 
[27]  Yamashia, K., Nakate, T., Okimoto, K., Ohike, A., Tokunaga, Y., Ibuki, R., Higaki, K., Kimura, T.,. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int. J. Pharm. 2003, 267, 79-91.
 
[28]  Higuchi, T., Ikeda, M. “Rapidly dissolving forms of digoxin: hydroquinone complex”. J. Pharm. Sci. 1974, 63(5), 809-811.
 
[29]  Nelson, E., Knoechel, E.L., Hamlin, W.E., Wagner, J.G.,. Influence of the absorption rate of tolbutamide on the rate of decline of blood sugar levels in normal humans. Int. J. Pharm. 1962, 51, 509-514.
 
[30]  Lin, S.L., Lachman, L., Swartz, C.J., Heubner, C.F.,. Preformulation investigation I. Rslation of salt forms and biological activity of an experimental antihypertensive. J. Pharm. Sci. 1972, 61(9), 1418-1422.
 
[31]  T. Vasconcelos, B. Sarmento, and P. Costa, “Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs,” Drug Discov. Today, vol. 12 issues 23-24, 2007, pp. 1068-1075, doi:10.1016/j.drudis.2007, 09, 005.
 
[32]  Rogers TL, Hu JH, Yu ZS, Johnston KP, Williams RO., III A novel particle engineering technology: spray-freezing into liquid. Int J Pharm. 2002, 242, 93-100.
 
[33]  Rogers TL, Nelsen AC, Hu JH, Brown JN, Sarkari M, Young TJ, et al. A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid. Eur J Pharm Biopharm. 2002, 54, 271–280
 
[34]  Hu JH, Rogers TL, Brown J, Young T, Johnston KP, Williams RO. Improvement of dissolution rates of poorly water soluble APIs using novel spray freezing into liquid technology. Pharm Res. 2002, 19, 1278-1284.
 
[35]  Speiser P. Galenische Aspecte der Arzneimittelwirkung. Pharm Acta Helv. 1966, 41, 321-342.
 
[36]  Adel EI-Egakey M, Soliva M, Speiser P. Hot extruded dosage forms. Pharm Acta Helv. 1971, 46, 31-52.
 
[37]  Huttenrauch R. Spritzgieβverfahren zur Herstellung peroraler Retardpraperate. Pharmazie. 1974, 29, 297-302.
 
[38]  Reference: 4. Seil JT, Webster TJ. Spray deposition of live cells throughout the electrospinning process produces nanofibrous three-dimensional tissue scaffolds. Int J Nanomedicine. 2011, 6, 1095-1099.
 
[39]  Jannesari M, Varshosaz J, Morshed M, Zamani M. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomedicine. 2011, 6, 993-1003.
 
[40]  Neves NM, Campos R, Pedro A, Cunha J, Macedo F, Reis RL. Patterning of polymer nanofiber meshes by electrospinning for biomedical applications. Int J Nanomedicine. 2007, 2, 433-448.
 
[41]  Wang Y, Zhang C, Zhang Q, Li P. Composite electrospun nano-membranes of fish scale collagen peptides/chito-oligosaccharides: antibacterial properties and potential for wound dressing. Int J Nanomedicine. 2011, 6, 667-676.
 
[42]  Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006, 17, 89-106.
 
[43]  Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007, 12, 1068-1075.
 
[44]  Yu DG, Gao LD, White K, Brandford-White C, Lu WY, Zhu LM. Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug. Pharm Res. 2010, 27, 2466-2477.
 
[45]  Yu DG, Yang JM, Branford-White C, Lu P, Zhang L, Zhu LM. Third generation solid dispersions of ferulic acid in electrospun composite nanofibers. Int J Pharm. 2010, 400, 158-164.
 
[46]  Yu DG, Shen XX, Brandford-White C, White K, Zhu LM, Bligh SWA. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology. 2009, 20, 055104.
 
[47]  Yu DG, Branford-White C, White K, Li XL, Zhu LM. Dissolution improvement of electrospun nanofiber-based solid dispersions for acetaminophen. AAPS Pharm Sci Tech. 2010, 11, 809-817.
 
[48]  Yu DG, Branford-White C, Shen XX, Zhang XF, Zhu LM. Solid dispersions of ketoprofen in drug-loaded electrospun nanofibers. J Dispersion Sci Tech. 2010, 31, 902-908.
 
[49]  T. Vasconcelos, B. Sarmento, and P. Costa, “Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs,” Drug Discov. Today. 2007, vol. 12 issues 23-24, pp. 1068-1075.
 
[50]  F. V. T. Thakkar, T. G. Soni, M. C. Gohel, and T. R. Gandhi, “Supercritical fluid technology: A promising approach to enhance the drug solubility,” J. Pharm. Sci. Res., 2009, vol. 1, issue 4, pp. 1-14.
 
[51]  H. Karanth, V. S. Shenoy, and R. R. Murthy, “Industrially feasible alternative approaches in the manufacture of solid dispersions: A technical report,” AAPS PharmSciTech., 2006, vol. 7 issue 4, Article 87, E31-38.
 
[52]  Janssens S, de Armas HN, Remon JP, Van den Mooter G, The use of a new hydrophilic polymer, Kollicoat IR, in the formulation of solid dispersions of Itraconazole, European Journal of Pharmaceutical Sciences, 2007, 30, 288-294.
 
[53]  Six K, Verreck G, Peeters J, Brewster M, Van Den Mooter G, Increased Physical Stability and Improved Dissolution Properties of Itraconazole, a Class II Drug, by Solid Dispersions that Combine Fast- and Slow-Dissolving Polymers, Journal of Pharmaceutical Sciences. 2004, 93, 124-131.
 
[54]  Konno H, Taylor LS, Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine, Journal of Pharmaceutical Sciences. 2006, 95, 2692-2705.
 
[55]  Konno H, Taylor LS, Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine, Journal of Pharmaceutical Science. 2006, 95, 2692-2705.
 
[56]  Pikal MJ, Lukes AL, Lang JE and Gaines K Quantitative crystallinity determinations for betalactam antibiotics by solution calorimetry: correlations with stability. J. Pharm. Sci., 1978, 67(6): 767-73.