American Journal of Pharmacological Sciences
ISSN (Print): 2327-6711 ISSN (Online): 2327-672X Website: http://www.sciepub.com/journal/ajps Editor-in-chief: Srinivas NAMMI
Open Access
Journal Browser
Go
American Journal of Pharmacological Sciences. 2015, 3(5), 103-109
DOI: 10.12691/ajps-3-5-1
Open AccessResearch Article

Hydrophilic Matrices for Oral Control Drug Delivery

Muhammad U. Ghori1 and Barbara R Conway1,

1Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, UK, HD1 3DH

Pub. Date: December 18, 2015
(This article belongs to the Special Issue Recent Advances in Controlled Drug Delivery Systems)

Cite this paper:
Muhammad U. Ghori and Barbara R Conway. Hydrophilic Matrices for Oral Control Drug Delivery. American Journal of Pharmacological Sciences. 2015; 3(5):103-109. doi: 10.12691/ajps-3-5-1

Abstract

Oral controlled drug delivery has gathered tremendous attention over the years due to its many advantages over conventional dosage forms. Polymer-based matrices have become an integral part of the pharmaceutical industry. Hydrophilic matrices are capable of controlling the release of drug over an extended period of time. Hydrophilic polymers, especially the hydrophilic derivatives of cellulose ethers, are frequently used for these applications. Therefore, the objective of this review is to discuss the scientific and physicochemical aspects of these polymeric systems that can affect the drug release from such formulations.

Keywords:
hydrophilic matrices hyromellose methylcellulose matrix swelling matrix erosion

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  WISE, D. L. 2000. Handbook of Pharmaceutical Controlled Release Technology, Taylor & Francis.
 
[2]  YIHONG, Q. 2009. Development of modified release oral solid dosage forms. In: Q. YIHONG, C. Y., G. Z. ZHANG (ed.) Developing solid oral dosage forms: pharmaceutical theory and practice Elsevier.
 
[3]  REMINGTON, J. P. & ALLEN, L. V. 2013. Remington: The Science and Practice of Pharmacy, Pharmaceutical Press.
 
[4]  WEN, H. & PARK, K. 2011. Oral Controlled Release Formulation Design and Drug Delivery: Theory to Practice, Wiley.
 
[5]  ALDERMAN, D. A. 1984. A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. International Journal of Pharmaceutical Technology and Product Manufacture, 5, 1-9.
 
[6]  MADERUELO, C., ZARZUELO, A. & LANAO, J. M. 2011. Critical factors in the release of drugs from sustained release hydrophilic matrices. Journal of Controlled Release, 154, 2-19.
 
[7]  WEN, X., ALI, N. & ALI, R.-S. 2010. Oral extended release hydrophilic matrices: formulation and design. In: WEN, H. & PARK, K. (eds.) Oral Controlled Release Formulation Design and Drug Delivery: Theory to Practice. John Wiley & Sons.
 
[8]  SIEPMANN, J., SIEGEL, R. A. & RATHBONE, M. J. 2011. Fundamentals and Applications of Controlled Release Drug Delivery, Springer.
 
[9]  GHORI, M. U., ŠUPUK, E., & CONWAY, B. R. 2014. Tribo-electric charging and adhesion of cellulose ethers and their mixtures with flurbiprofen. European Journal of Pharmaceutical Sciences, 65, 1-8.
 
[10]  GHORI, M. U., ŠUPUK, E., & CONWAY, B. R. 2015. Tribo-electrification and powder adhesion studies in the development of polymeric hydrophilic drug matrices. Materials, 8(4), 1482-1498.
 
[11]  CHAIBVA, F. A., KHAMANGA, S. M. M. & WALKER, R. B. 2010. Swelling, erosion and drug release characteristics of salbutamol sulfate from hydroxypropyl methylcellulose-based matrix tablets. Drug Development and Industrial Pharmacy, 36, 1497-1510.
 
[12]  FORD, J. L., RUBINSTEIN, M. H., MCCAUL, F., HOGAN, J. E. & EDGAR, P. J. 1987. Importance of drug type, tablet shape and added diluents on drug release kinetics from hydroxypropylmethylcellulose matrix tablets. International Journal of Pharmaceutics, 40, 223-234.
 
[13]  SIEPMANN, J. & PEPPAS, N. A. 2001. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 48, 139-157.
 
[14]  CONTI, S., MAGGI, L., SEGALE, L., OCHOA MACHISTE, E., CONTE, U., GRENIER, P. & VERGNAULT, G. 2007. Matrices containing NaCMC and HPMC. 2. Swelling and release mechanism study. International Journal of Pharmaceutics, 333, 143-151.
 
[15]  LI, C. L., MARTINI, L. G., FORD, J. L. & ROBERTS, M. 2005. The use of hypromellose in oral drug delivery. Journal of Pharmacy and Pharmacology, 57, 533-546.
 
[16]  COLOMBO. P., BETTINI, R., PEPPAS. N. A., Observation of swelling process and diffusion front position during swelling in hydroxypropyl methyl cellulose (HPMC) matrices containing a soluble drug. Journal of Controlled Release 61 (1999) 83-91.
 
[17]  COLOMBO. P., BETTINI, R., SANTI. P., PEPPAS. N. A., Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharmaceutical Science and Technology Today, 3 (2000) 198-204.
 
[18]  GHORI, M. U. 2014. Release kinetics, compaction and electrostatic properties of hydrophilic matrices. PhD thesis, University of Huddersfield, UK.
 
[19]  GHORI, M. U., SMITH, A. M., & CONWAY, B. R. 2014. Hydration and erosion properties of cellulose ethers. In-Proceedings of The AAPS Annual meeting and Exposition.
 
[20]  OMIDIAN, H. P., Swelling agents and devices in oral drug delivery. Journal of Drug Delivery Science and Technology, 18 (2008) 83-93.
 
[21]  FERRERO, C., MASSUELLE, D. & DOELKER, E. 2010. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swelling-controlled drug release mechanism using dimensionless analysis. Journal of Controlled Release, 141, 223-233.
 
[22]  VUEBA, M. L., BATISTA DE CARVALHO, L. A. E., VEIGA, F., SOUSA, J. J. & PINA, M. E. 2005. Role of cellulose ether polymers on ibuprofen release from matrix tablets. Drug Development and Industrial Pharmacy, 31, 653-665.
 
[23]  TIWARI, S. B., MURTHY, T. K., PAI, M. R., MEHTA, P. R. & CHOWDARY, P. B. 2003. Controlled release formulation of tramadol hydrochloride using hydrophilic and hydrophobic matrix system. AAPS PharmSciTech, 4, 18-23.
 
[24]  MITCHELL, K., FORD, J. L., ARMSTRONG, D. J., ELLIOTT, P. N. C., ROSTRON, C. & HOGAN, J. E. 1993. The influence of concentration on the release of drugs from gels and matrices containing Cellulose ethers. International Journal of Pharmaceutics, 100, 155-163.
 
[25]  WAN, L. S. C., HENG, P. W. S. & WONG, L. F. 1991. The effect of hydroxypropylmethylcellulose on water penetration into a matrix system. International Journal of Pharmaceutics, 73, 111-116.
 
[26]  MILLER-CHOU, B. A. & KOENIG, J. L. 2003. A review of polymer dissolution. Progress in Polymer Science, 28, 1223-1270.
 
[27]  GHORI, M. U., & CONWAY, B. R. 2015. Effect of viscosity on swelling, dissolution and compaction properties of hypromellose matrices. In-Proceedings of CRS Annual meeting & Exposition.
 
[28]  FORD, J. L., RUBINSTEIN, M. H., CHANGELA, A. & HOGAN, J. E. 1985a. Influence of pH on the dissolution of promethazine hydrochloride from hydroxypropylmethylcellulose controlled release tablets. Journal of Pharmacy and Pharmacology, 37, 115P-115P.
 
[29]  TALUKDAR, M. M., MICHOEL, A., ROMBAUT, P. & KINGET, R. 1996. Comparative study on xanthan gum and hydroxypropylmethyl cellulose as matrices for controlled-release drug delivery I. Compaction and in vitro drug release behaviour. International journal of pharmaceutics, 129, 233-241.
 
[30]  GAO, P., SKOUG, J. W., NIXON, P. R., ROBERT JU, T., STEMM, N. L. & SUNG, K.-C. 1996. Swelling of hydroxypropyl methylcellulose matrix tablets. 2. Mechanistic study of the influence of formulation variables on matrix performance and drug release. Journal of Pharmaceutical Sciences, 85, 732-740.
 
[31]  KIM, C.-J. 1999. Release kinetics of coated, donut-shaped tablets for water soluble drugs. European Journal of Pharmaceutical Sciences, 7, 237-242.
 
[32]  KIM, H. & FASSIHI, R. 1997. Application of a binary polymer system in drug release rate modulation. 1. Characterization of release mechanism. Journal of Pharmaceutical Sciences, 86, 316-322.
 
[33]  BETTINI, R., CATELLANI, P. L., SANTI, P., MASSIMO, G., PEPPAS, N. A. & COLOMBO, P. 2001. Translocation of drug particles in HPMC matrix gel layer: Effect of drug solubility and influence on release rate. Journal of Controlled Release, 70, 383-391.
 
[34]  GHORI, M. U., GINTING, G., SMITH, A. M. & CONWAY, B. R. 2014. Simultaneous quantification of drug release and erosion from hypromellose hydrophilic matrices. International Journal of Pharmaceutics, 465, 406-412.
 
[35]  SINHA ROY, D. & ROHERA, B. D. 2002. Comparative evaluation of rate of hydration and matrix erosion of HEC and HPC and study of drug release from their matrices. European Journal of Pharmaceutical Sciences, 16, 193-199.
 
[36]  REZA, M. S., QUADIR, M. A. & HAIDER, S. S. 2003. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery. Journal of Pharmacy and Pharmaceutical Sciences, 6, 282-291.
 
[37]  EBUBE, N. K & JONES, A. B. 2004. Sustained release of acetaminophen from heterogeneous mixture of two hydrophilic non-ionic cellulose ether polymers International Journal of Pharmaceutics, 272, 19-27.
 
[38]  CAMPOS-ALDRETE, M. E. & VILLAFUERTE-ROBLES, L. 1997. Influence of the viscosity grade and the particle size of HPMC on metronidazole release from matrix tablets. European Journal of Pharmaceutics and Biopharmaceutics, 43, 173-178.
 
[39]  NELLORE, R. V., SINGH REKHI, G., HUSSAIN, A. S., TILLMAN, L. G. & AUGSBURGER, L. L. 1998. Development of metoprolol tartrate extended-release matrix tablet formulations for regulatory policy consideration. Journal of Controlled Release, 50, 247-256.
 
[40]  KLANČAR, U., BAUMGARTNER, S., LEGEN, I., SMRDEL, P., KAMPUŠ, N. J., KRAJCAR, D., ... & KOČEVAR, K. (2015). Determining the Polymer Threshold Amount for Achieving Robust Drug Release from HPMC and HPC Matrix Tablets Containing a High-Dose BCS Class I Model Drug: In Vitro and In Vivo Studies. AAPS PharmSciTech, 16(2), 398-406.
 
[41]  JAIN, A. K., SÖDERLIND, E., VIRIDÉN, A., SCHUG, B., ABRAHAMSSON, B., KNOPKE, C., TAJAROBI, F., BLUME, H., ANSCHÜTZ, M. & WELINDER, A. 2014. The influence of hydroxypropyl methylcellulose (HPMC) molecular weight, concentration and effect of food on in vivo erosion behavior of HPMC matrix tablets. Journal of Controlled Release. 187 50-58.
 
[42]  HENG, P. W. S., CHAN, L. W., EASTERBROOK, M. G. & LI, X. 2001. Investigation of the influence of mean HPMC particle size and number of polymer particles on the release of aspirin from swellable hydrophilic matrix tablets. Journal of Controlled Release, 76, 39-49.
 
[43]  CARABALLO, I. 2010. Factors affecting drug release from hydroxypropyl methylcellulose matrix systems in the light of classical and percolation theories. Expert Opinion on Drug Delivery, 7, 1291-1301.
 
[44]  DABBAGH, M. A., FORD, J. L., RUBINSTEIN, M. H. & HOGAN, J. E. 1996. Effects of polymer particle size, compaction pressure and hydrophilic polymers on drug release from matrices containing ethylcellulose. International Journal of Pharmaceutics, 140, 85-95.
 
[45]  VELASCO, M., FORD, J. L., ROWE, P. & RAJABI-SIAHBOOMI, A. R. 1999. Influence of drug: hydroxypropylmethylcellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from HPMC tablets. Journal of Controlled Release, 57, 75-85.
 
[46]  ZULEGER, S. & LIPPOLD, B. C. 2001. Polymer particle erosion controlling drug release. I. Factors influencing drug release and characterization of the release mechanism. International Journal of Pharmaceutics, 217, 139-152.
 
[47]  DOW 2006. The dow chemical company, Using Dow Excipients for Controlled Release of Drugs in Hydrophilic Matrix Systems, 2006.
 
[48]  MIRANDA, A., MILLAN, M., & CARABALLO, I., 2007. Investigation of the influence of particle size on the excipient percolation thresholds of HPMC hydrophilic matrix tablets. Journal of Pharmaceutical Sciences 96. 10 : 2746-2756.
 
[49]  MALAMATARIS, S. & KARIDAS, T. 1994. Effect of particle size and sorbed moisture on the tensile strength of some tableted hydroxypropyl methylcellulose (HPMC) polymers. International Journal of Pharmaceutics, 104, 115-123.
 
[50]  GHORI, M. U., SUPUK, E., CONWAY., B.R. 2012. Impact of hypromellose substitution levels on tribo-electrification, swelling and dissolution rate of flurbiprofen matrices. In-Proceedings of UKPharmSci.
 
[51]  RAJABI-SIAHBOOMI, A. R., BOWTELL, R. W., MANSFIELD, P., DAVIES, M. C. & MELIA, C. D. 1996. Structure and behavior in hydrophilic matrix sustained release dosage forms: 4. Studies of water mobility and diffusion coefficients in the gel layer of HPMC tablets using NMR imaging. Pharmaceutical Research, 13, 376-380.
 
[52]  MCCRYSTAL, C. B., FORD, J. L. & RAJABI SIAHBOOMI, A. R. 1999. Water distribution studies within cellulose ethers using differential scanning calorimetry. 2. Effect of polymer substitution type and drug addition. Journal of Pharmaceutical Sciences, 88, 797-801.
 
[53]  SARKAR, N. & WALKER, L. 1995. Hydration-dehydration properties of methylcellulose and hydroxypropylmethylcellulose. Carbohydrate Polymers, 27, 177-185.
 
[54]  ASARE-ADDO, K., KAIALY, W., LEVINA, M., RAJABI-SIAHBOOMI, A., GHORI, M. U., SUPUK, E., LAITY, P. R., CONWAY, B. R. & NOKHODCHI, A. 2013. The influence of agitation sequence and ionic strength on in vitro drug release from hypromellose (E4M and K4M) ER matrices-The use of the USP III apparatus. Colloids and Surfaces B: Biointerfaces, 104, 54-60.
 
[55]  VIRIDÉN, A., LARSSON, A. & WITTGREN, B. 2010. The effect of substitution pattern of HPMC on polymer release from matrix tablets. International Journal of Pharmaceutics, 389, 147-156.
 
[56]  VIRIDÉN, A., WITTGREN, B., ANDERSSON, T. & LARSSON, A. 2009. The effect of chemical heterogeneity of HPMC on polymer release from matrix tablets. European Journal of Pharmaceutical Sciences, 36, 392-400.
 
[57]  ESCUDERO, J., FERRERO, C. & JIMÉNEZ-CASTELLANOS, M. 2010. Compaction properties, drug release kinetics and fronts movement studies from matrices combining mixtures of swellable and inert polymers. II. Effect of HPMC with different degrees of methoxy/hydroxypropyl substitution. International Journal of Pharmaceutics, 387, 56-64.
 
[58]  DALY, P., DAVIS, S. & KEIMERLEY, J. 1984. The effect of anionic surfactants on the release of chlorpheniramine from a polymer matrix tablet. International Journal of Pharmaceutics, 18, 201-205.
 
[59]  NAKANO, M., OHMORI, N., OGATA, A., SUGIMOTO, K., TOBINO, Y., IWAOKU, R. & JUNI, K. 1983. Sustained release of theophylline from hydroxypropylcellulose tablets. Journal of Pharmaceutical Sciences, 72, 378-380.
 
[60]  SALAMONE, J. C. 1996. Polymeric Materials Encyclopedia, Twelve Volume Set, Taylor & Francis.
 
[61]  WAN, L. S. C., HENG, P. W. S. & WONG, L. F. 1991. The effect of hydroxypropylmethylcellulose on water penetration into a matrix system. International Journal of Pharmaceutics, 73, 111-116.
 
[62]  GAO, P., SKOUG, J. W., NIXON, P. R., ROBERT JU, T., STEMM, N. L. & SUNG, K.-C. 1996. Swelling of hydroxypropyl methylcellulose matrix tablets. 2. Mechanistic study of the influence of formulation variables on matrix performance and drug release. Journal of Pharmaceutical Sciences, 85, 732-740.
 
[63]  RAVI, P. R., KOTREKA, U. K., & SAHA, R. N. 2008. Controlled release matrix tablets of zidovudine: effect of formulation variables on the in vitro drug release kinetics. AAPS PharmsciTech, 9(1), 302-313.
 
[64]  CONTE, U. & MAGGI, L. 1996. Modulation of the dissolution profiles from Geomatrix sup® multi-layer matrix tablets containing drugs of different solubility. Biomaterials, 17, 889-896.
 
[65]  REYNOLDS, T. D., MITCHELL, S. A. & BALWINSKI, K. M. 2002. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets. Drug Development and Industrial Pharmacy, 28, 457-466.
 
[66]  FORD, J. L., RUBINSTEIN, M. H. & HOGAN, J. E. 1985b. Formulation of sustained release promethazine hydrochloride tablets using hydroxypropyl-methylcellulose matrices. International Journal of Pharmaceutics, 24, 327-338.
 
[67]  FORD, J. L., RUBINSTEIN, M. H., MCCAUL, F., HOGAN, J. E. & EDGAR, P. J. 1987. Importance of drug type, tablet shape and added diluents on drug release kinetics from hydroxypropylmethylcellulose matrix tablets. International Journal of Pharmaceutics, 40, 223-234.
 
[68]  GHORI, M. U., ALBA, K., SMITH, A. M., CONWAY, B. R., & KONTOGIORGOS, V. 2014. Okra extracts in pharmaceutical and food applications. Food Hydrocolloids, 42, 342-347.